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HETEROGENEOUS MULTISPACE DATAFLOW NETWORK

The article discusses a method for constructing a heterogeneous dataflow network based on the concept of a PF-network
using the excess de Bruijn topology. The issues of the network structure, the main aspects of functioning, the principle of
distribution of tasks and mechanisms for ensuring fault tolerance are considered. A superficial review of load balancing
automation using tree decomposition and grain management was also done. A comparison with the original concept was made,
the main gains, losses and prospects were identified.
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Urgency of the research. Currently, high-performance computing is increasingly at a dead
end. Increasing the number of nodes increases the nominal performance of the system, as well as
power consumption and space requirements, while the real performance barely increases. The
reason for this is the problems of parallelism inherent in currently popular control flow systems.
The solution to this problem is the transition to another paradigm - dataflow. However, this is not
a panacea, because there are a number of dataflow architectures, each of which has its own
advantages and disadvantages. To circumvent these problems, it is worth considering not one
architecture, but a number of specialized architectural solutions combined into a single
heterogeneous system. Of course, to ensure high productivity, such a system must be quite large -
this raises the issue of its structure. At the moment, only distributed architecture, clusters and
networks are capable of aggregating a large amount of computing resources. Thus, a
heterogeneous distributed dataflow system or network is, in fact, the only acceptable solution to
the given problem, which makes this issue relevant.

Target setting. The key characteristics for such a network are the following 4: ease of
management - allocation of tasks and assignments, ease of searching for free resources, data
transfer efficiency and fault tolerance. The issue of grain control is no less relevant. The main
target of this research is to ensure these requirements within the framework of the proposed
method or to create a basis for their implementation in the future.

Actual scientific researches and issues analysis. At the moment, there are a number of
studies devoted to dataflow in the context of high-performance computing. The application and
advantages of dataflow computing in nonuniform networks are considered [1], the concept of an
open dataflow network based on Petri net elements is proposed [2], the analysis of algorithms
and implementations of systems of this type was performed [3]. At the same time, there is
interest in the subject area from companies as well: for example, Maxeler Technologies produces
dataflow accelerators based on FPGA, one of the areas of application of which is
high-performance computing [4].

Uninvestigated parts of general matters defining. Although the subject area continues to
develop, there are still unexplored or ignored points. One of them is the issue of granularity
management, which is partially implemented in PF networks. Also, insufficient attention is paid
to fault tolerance, which is critical for high-performance systems.

The research objective. The purpose of this study is to improve the efficiency of the PF
network in the context of high-performance computing. The tasks of the research are the analysis
of PF networks with the de Bruijn structure, an overview of their main properties and application
for solving problems and meeting requirements, as well as - a conceptual analysis in comparison
with the original solution.

The statement of basic materials. A typical PF network includes 3 management levels that
provide dynamic parallelization [2, 5]. All of them are implemented in hardware in the form of
corresponding elements and are connected by two highways along which data tokens circulate.
This management structure is shown in Fig. 1.



Fig. 1. Management structure of PF network [5]
At the upper, file level, the task is presented in the form of an executable file - the so-called

p-script of subtasks, which describes complex algorithms that include data distribution (partial
processing of arrays, operations on big data). It contains computational tasks of a lower order -
p-scripts of formulas, between which there are dependencies on the data. The execution follows
a model traditional for dataflow systems: a subtask can be started for execution when the ready
condition is fulfilled for it. After execution, the result tokens are returned to the concentrator and
activate dependent subtasks.

Similar manipulations occur at the operator level, where parallel operators act as objects.
Each such operator is a sequential program - an s-script, processed on a functor - processor of
classical architecture.

Hardware structure of PF network. The hardware components of the highest level in this
kind of network are the so-called PF servers, interconnected by any network technology: for
example, using Gigabit Ethernet. Each such server is a structurally and functionally complete
computer, and consists of PF cells. There are 3 types of cells: A, B and C [2]. Fig. 2 shows the
structure of these elements.

Fig. 2. Structure of PF network elements [2]
The A-cell (foreground cell) is responsible for the distribution of tasks on the system (file

level), as well as for the execution of those tasks that require constant uploading of data from
external devices. The communicator of this element manages the distribution of tasks and, in
case of failure of the background cells, redistributes the files associated with them to other
devices.

B-cell (background cell) works mainly at the operator level and performs complex tasks that
do not require constant data swapping - for example, processing arrays. In the event that the
B-cell lacks resources, it turns to the processing elements (C-cells), which contain only functors
and all processing results are sent to the B-cell.

Combined in a certain way, these elements make up PF servers. There are various options for
the structure of their computing field, including two-dimensional and three-dimensional options.
In fig. 3 shows examples of the two-dimensional structure of the computing field. On the left is
a linear version, where each B-cell corresponds to a line of C-cells. On the right is a matrix,
where simultaneous grouping on two axes is performed, and from each B-cell it is possible to
reach any processing cell in 2 steps.



Fig. 3. Examples of the structure of the computing field of the PF server [2].
Advantages of PF network conception. The key advantage of the described solution is its

scalability. The PF network is scalable at the level of servers, within each of them it allows
additional elements to be connected to the buses, and within each of the elements it realizes the
possibilities of separate scaling of the controlling (concentrators, schedulers) and executing
(functors) parts. Similarly, this applies to scheduling: the addition of additional resources occurs
automatically, and their failure is not critical for calculations and does not require human
intervention.

Another interesting aspect is the distribution of management on several levels. Using this kind
of dataflow-of-dataflow allows you to fine-tune the grain while sharing overhead between levels.

This makes the proposed solution extremely attractive for the construction of supercomputers
and high-performance systems.

Disadvantages of PF network. The key disadvantage of this concept can be called
homogeneity and attachment to classic processors as computers. The concept of functors
involves the execution of sequential programs according to the MIMD principle, while ignoring
the possibility of combining classical processors with non-classical elements, including graphics
processors, vector extensions and specialized FPGA-based chips.

In addition, the extensive use of buses in the structure of servers, on the one hand, provides
good opportunities for communication and scaling, but it has its drawbacks. Thus, performing
operations in a streaming system requires fairly frequent data transfers between elements, and
the bus makes such transfers strictly sequential, unlike a network, where elements are able to
exchange information independently of each other.

A final aspect worth noting is the presence of single points of failure in the form of
foreground elements. If such an element fails, the entire line of B-cells associated with it, or even
the entire PF server, will become unavailable.

De Brujin network as basis. From the point of view of management, the main advantage of
this type of network is the simplicity of decomposition into trees. So, the classical de Bruyne
topology can be decomposed into 2 binary trees, the excess one into 3 ternary trees [6]. At the
same time, for different trees, the sets of non-finite nodes are different, as a result, the root nodes
for one tree are finite for others, which allows the use of decomposition both for finding
alternative routes and for parallel management of the system. Fig. 4 presents the de Bruyne
network, built using the elements of the PF network, as well as the trees into which it is
decomposed. At the same time, it is considered that the roots of trees are always A-cells, and
other elements of the topology play the role of B-cells. As for C-cells, they are not represented
on the topology and are considered abstracted "inside" foreground and background nodes.



Fig. 4. De Bruyne topology and its decomposition into trees, implemented in the form of a PF
network [6]

In the context of building an effective dataflow network, this kind of property simultaneously
solves several problems. On the one hand, independent trees make it possible to load the network
with tasks from several directions at once, involving different nodes and in a different sequence,
thus avoiding conflicts during transmission. Moreover, the tree-like structure of the hierarchy
allows higher-order nodes to abstract from control aspects at lower levels, allowing for more
precise control of the load on nodes. On the other hand, network connectivity makes it possible
to balance the load on trees by redistributing tasks and subtasks. Another bonus is fault tolerance
and static level 4, which makes it possible to implement such a system without unnecessary
hardware costs.

However, the excess de Brujin network is much more interesting. Unlike the classic one, it
uses redundant binary representation to encode nodes (RBR). In fig. 5 shows the model of the PF
network based on the redundant topology of de Brujin together with the trees of its
decomposition.

Fig. 5. Excess de Brujin PF network and its decomposition
The specificity of this network compared to the previous one is the property of

non-uniqueness of number representations, which can be used to abstract resources inside a
"logical" binary node. Its following properties contribute to this:

1. Each excess de Brujin network contains exactly 2 classical de Brujin subnetworks of the
same rank. At the same time, these two subnets always have only one common node - node
number 0. For the above network, these are the subnets 00-01-10-11 and 00-0Т-Т0-ТТ.

2. In addition to nodes included in 2 subgraphs, there is also a "hidden space" that contains
nodes with the same numbers but different codes.

This allows you to logically divide the network into 3 parts - "spaces":



1. An open (direct, positive) space containing nodes that are part of a "positive" binary
subgraph. These nodes contain only the numbers 0 and 1 in their code, and are therefore ideal
candidates as a "facade".

2. A closed (inverse, negative) space containing the nodes of the "negative" subgraph. Is a
complete copy of the "direct" space. This allows you to treat it as a virtual independent device or
cluster with the same characteristics as the host system and use it for both balancing and
redundancy. At the same time, in contrast to normal redundancy, in this case all working nodes
of the main system remain available through redundancy, since they are hardware-only, which
makes such redundancy much more effective.

3. Hidden space. Contains nodes with mixed codes. At the same time, due to the properties
of RBR, for each hidden node there is one and exactly one node with the same number that is
included in the direct or inverse space. This makes it possible to consider hidden nodes as an
analogue of C-cells, which expand the computational capabilities of higher-order nodes, but at
the same time, each such cell will have its own unique identifier, the node code, which allows it
to be accessed not only directly from the owner node, but also and in a bypass, using a common
network.

The only exception to this separation is node 0, which enters both open and closed space at
the same time. On the one hand, this makes it a good candidate as a main node, but it also makes
it the most vulnerable part of the system. This problem can be easily solved using classic
redundancy. However, even it is not the only point of failure: thanks to the properties of
decomposition, all serviceable nodes of the system are guaranteed to be available, provided that
the number of failures in the system does not exceed 2.

Fault tolerance and load balancing. Applying such a separation allows you to apply the
following work model. In normal mode, the two parts of the system work independently. At the
same time, node 0 is hardware duplicated: one element serves the "positive" subsystem, and the
other serves the "negative". Thus, the two parts of the system will operate relatively
independently.

What is the benefit of this? First of all, it allows you to load the system in parallel: on the one
hand in 2 spaces at the same time, on the other - in each space from 2 directions. This makes it
possible to talk about 4 independent "waves" or "streams" of computing tasks, spreading through
the system and filling it with data, starting from the roots of the tree. In fig. 6 shows an example
of task distribution over the network.

Fig. 6. Distribution of tasks throughout the system.
At the same time, nodes 00, 11 and TT perform the role of A-cells. Other nodes - 01, 10, 0Т

and Т0 - perform 2 roles at once: from the point of view of planning, they are responsible for
grinding the grain of the task for transferring tasks to the next level, and from the point of view
of calculations - performing those tasks that do not require a large amount of data swapping. As
for "hidden" nodes 1T and T1, their role is to calculate specialized tasks and expand the



capabilities of neighboring nodes. At the same time, nodes with the same number have priority in
accessing their resource.

If a failure occurs, the following is done. If the failure is insignificant (for example, among
hidden nodes or in the middle of the tree so that it does not destroy the tree completely) - it can
be simply ignored. This will slightly reduce the speed of the system, but not significantly: since
the load streams intersect, the nodes lost to one will immediately become less loaded and more
attractive to the other, which automatically balances the load. In the case when the failure is
significant, there are several of them and this blocks the very possibility for the stream to
continue its work in regular mode - the solution will be to switch to ternary trees. This will allow
you to bypass the problem by using hidden nodes and access those parts of the system that are
isolated. Fig. 7 shows these 2 cases of failure: on the left - insignificant failure, on the right -
transition to ternary trees.

Fig. 7. Solving the problems of fault tolerance.
Results and discussions. Although at this stage of research it is very difficult to evaluate

the proposed method, nevertheless, based on the general properties, it is possible to analyze and
qualitatively compare the original concept of PF networks and the proposed idea of a multi-space
network. Table 1 shows the main characteristics of the system that follow from these two
concepts.

Table 1

Properties of the system provided by the concept

Property Basic SF network Proposed network
Grain management On 2 management levels At 2 management levels and/or at each

tree level
Count of loading “streams” A maximum of 3 with a 3-dimensional

field structure
4 in standard mode, 3 – when
switching to ternary trees

Roles of cells Static, defined by the structure of the
element.

Partially static: all nodes contain
concentrators, schedulers, and functors,
but their role is determined by their
place in the tree.

Interchangeability of
elements

Only within one line Any element can act as a background.

What is a node in the model? A specific element – the cell Abstraction - both a specific cell and a
certain group of specialized computers
supplemented with control elements of
the PF network.

Availability of resources in
case of failure

Medium: When A-cells fail, access to
associated background cells is lost.
However, other cells can be easily
replaced if they fail.

High: As long as at least one A-cell is
working and connectivity is not
broken, all viable nodes will be
reachable. Substitution of nodes is also
maximal.

Network topology Multibus Excess be Brujin with additions



Ease of scaling Free: elements can be connected to any
places of the network without changing
its functioning.

Scaling is by topology, so you can't
scale the system arbitrarily.

Ease of searching for a free
resource

Via bus request Through tree descent and bus request
within the same number

Parallelism of transfers Low: work on the bus always happens
sequentially

High: the only limitation is the
impossibility of parallel reception or
transmission of 2 messages by one
element.

Analyzing these properties, it can be seen that the only significant conceptual drawback
is the limitation of scaling. This is normal given the topology binding. However, on the other
hand, it makes it possible to significantly increase such important characteristics as fault
tolerance and ease of resource search, as well as to make shipments much more independent
thanks to the combination of bus and direct connections between elements. Another achievement
is the distribution of management and loading: a total of 3 nodes manages the system, and as
long as at least 1 is functioning, the system is able to fully perform its tasks.

Conclusions. The article proposes a method of constructing a heterogeneous dataflow
network, the nodes of which are divided into 3 "spaces" and perform different roles. This allows
parallel loading of the system in 4 different directions, treating the 2 halves of the system as
relatively independent devices, while allowing devices in one half to access devices in the other.

One of the key advantages of the proposed solution is the good potential for grain control.
Since the network can be decomposed into trees (both binary and ternary), this makes it possible
to divide the original task into parts - task packages, which will also be divided when descending
the tree, which will allow automating load balancing and achieving maximum nodes utilization.
Other positive aspects are high fault tolerance and load parallelism, thanks to which the system is
filled with tokens not from one, but from 3 points at once, which minimizes latency.

The key disadvantages of the proposed solution are its closedness in scaling, as well as the
use of RBR, which complicates the hardware structure.

This approach has great potential for development. A key issue is managing the granularity in
task distribution across the tree. Solving this problem will make it possible to implement not
only automatic parallelism, but also automatic load balancing and automatic grain management,
which may ultimately combine threaded, coarse-grained and classic dataflow, realizing the
advantages of each architecture.
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