60 ICSFTI2019 Section 1. SEC
UDC 004.056

Kostiantyn Minkov,
Viktor Selivanov, Artem Volokyta

PROTECTION SYSTEM OF MICROSERVICE SYSTEMS

KocrsinTH MiHBKOB,
BikTop CeniBanos, Aprem BoJsioknra

CUCTEMA 3AXHUCTY MIKPOCEPBICHUX CUCTEM

The article provides an overview of the security system for microservices. As
methods used by this system, tools such as HTTPS, JWT, OAuth2, RM, TOTP were
considered. The implementation is performed using the Java programming language.

Key words: microservice systems, security systems, distributed systems,
authentication, role model.

Fig.: 1. Tabl. 0. Bibl.: 12.

VY cTaTTi BUKOHYETHCS OTJISIIT CUCTEMH 3aXHCTY JJIs1 MIKPOCEPBICHUX CHCTEM. Y
SAKOCTI METOMIB, SIKHMH ONEpYy€ JaHa CHCTeMa, Oyl pO3IISHYTI 3aco0u, Taki sK
HTTPS, JWT, OAuth2, RM, TOTP. Peamizamiss BMKOHaHa 3a JOIOMOI'OI) MOBH
IporpaMyBaHHs Java.

KirouoBi cjioBa: MIKpOCepBICHI CHUCTEMH, CHUCTEMH 3aXHCTY, PO3MOALUICHI
CHCTEMH, aBTeHTU(DIKAIIisI, POJTHOBA MOJIENb.

Puc.: 1. Ta6u. 0. bi6a.: 12.

Relevance of research topic. Due to the rapid introduction of microservice
systems among various e-commerce companies (Netflix, Amazon, Hailo), there is a
need for the means for their effective protection.

Analysis of recent research and publications. Despite the large number of
works and studies devoted to the systems of protection, the protection of the
microsystems itself isn’t quite detailed in the literature.

Identification of unexplored parts of the general problem. Integration of
known methods of protection into a coherent system. Creating a system of protection
focused on microservices.

Setting objectives. The purpose of this work is to systematize known methods
of protection and their consolidation to create a unified system in the context of
microservice systems.

The statement of basic materials. Given the rapid development and
globalization of modern business, there has been a demand for the development and



Section 1. SEC ICSFTI2019 61

support of large systems for automating business processes in large companies, thus
making their digital transformation. Such systems are most often implemented in the
form of monolithic systems [1]. Over time, such systems grow more and more and can
become difficult to maintain, deploy and develop by a large team. The introduction of
small changes often leeds to the need to re-plan the entire application. With the
development of cloud technologies, the issue is about scaling such systems, since
monolithic applications usually offer a large number of services, some of which are
used more often than others. This leeds to constant financial overheads for the
maintenance of such software products [2].

Microservices have become the solution to the above problems. The microservice
pattern suggests dividing system A into a plurality of small services puS (uS;, uS,, uSy),
each offering a subset of services S (S;, S,, Sy) provided by program A. Each microservice
is developed and tested by the team of developers uT;. Each microservice is developed
using the independent code bases and the pT; team, which is also responsible for
deploying, scaling, operating and upgrading the micro-service on laaS / PaaS solutions in
a cloud environment. This approach allows to simplify the scaling, deployment and
making necessary changes to individual parts of the system [3].

However, it should be noted that the microservice technology is not without
some disadvantages. Such an approach complicates the architecture of the system,
there is a complex network model of interaction between its components, considering
that the number of services can reach several hundreds (Figure 1). Delay in the
network, fault tolerance, message transformation, network reliability, asynchronousity,
versioning of different subsystems, changes in loads within a particular version of
applications - common issues in such systems [4].

The security challenge caused by the complexity of the network is the ever-
increasing difficulty in monitoring, auditing and analyzing the functioning of the entire
program. Since microservices are often deployed in a cloud environment that the
application owners do not control, it is difficult for them to imagine the overall view of
the entire application. Thus, attackers can use this complexity to launch attacks on
applications. Another security issue is related to the trust among distributed
microservices. An individual microservice can be compromised and controlled by an
attacker. For example, an attacker can take advantage of the vulnerability in the
microservice facing the public user and increase his privileges on the virtual machine
on which the microservice operates. As a result, individual microservices can become
unreliable [5]. Also, there is a question of authentication of individual system services
among themselves.

Since, as noted above, the system is distributed, and communication is most
often performed using the REST architectural style, one of the first methods to help
secure the system is to configure the HTTPS protocol accross of the system [7]. It
should be noted that the use of keys generated in certification center is not necessary
for all system services. This should only be done for client-facing applications. For



62 ICSFTI2019 Section 1. SEC

internal services there is enough to have self-signed certificate, which must be added
to the keystore on the virtual machines of other microservices.

Fig. 1. Scheme of Heptio microsystem [6]

One of the standard ways to protect the system is to introduce the role model
for users. This model simplifies the setup of checks in the system and builds a clear
access model that fits well into the hierarchical model of the company's departments.
Mathematically, such a model is described using formula 1 [8].

permiSSionS(S) = Ureroles(s){pil(pi» T‘) € PA} (1)

OAuth2 is an open standard that allows third-party applications to have limited
access to the HTTP service on behalf of the owner of the resource.

This standard solves the problem of the need to store a password in the client
system, since compromising a third-party program will compromise the end-user
password and all data protected by this password. Instead of using the resource owner
credentials to access secure resources, the client receives an access token, a string that
denotes a specific area, lifetime, and other attributes of access. Access Tokens are
issued to third-party clients by the authorization server with the permission of the
owner of the resource. The client uses a token to access secure resources hosted on the
resource server [9].

Oauth2 introduces a clear limitation of the rights and duration of access to a
secured resource by the client, since the token is temporary and contains only a set of
specific permissions.

As an add-on to OAuth2, another one is used - JWT. In the standard



Section 1. SEC ICSFTI2019 63

implementation of OAuth2, a random string is used as a token. It has some
disadvantages, namely:

1. At each request to one of the protected microservices, an additional request
to the SSO is required to confirm the validity of the token, which increases the load on
the network and introduces an additional delay to the response time.

2. The token does not have any information about the user or the authentication
system.

To resolve this issue, a RFC 7519 standard was introduced, which defines a
JSON token containing a payload (user, custom role, SSO, time before disabling the
token, etc.), and a digital signature generated with the private key of the authentication
system based on the body of the request using RSA or ECDSA. Thus, any service
having a public key can check the token without any additional queries and get
information about the user directly from the token [10].

A known problem in developing security systems is the storage of user
passwords in a relational database. Storing passwords in the usual way is equivalent to
writing them on a digital paper. If an attacker gets access to the database and steals a
password table, then he will be able to access each user’s account.

The safest way to store a password is to hash it.

The problem with the SHA family of algorithms is that they were designed in
such a way as to have a higher computing speed. Rapid calculations mean faster brute-
force attacks. An example of adaptive functions that can compensate increasing
computer power is the berypt algorithm. Also, the algorithm is resistant to attack using
rainbow tables, because it uses a random tape (salt) that is added to the hash of the
password while storing.

One of the standards that helps protect a user from losing a password is the two-
factor authentication of the TOTP protocol.

One-time passwords are often better than stronger authentication forms, such as
public key infrastructure (PKI) or biometric data, since this method does not require
the installation of any client software on a user's computer [11].

The HOTP algorithm is based on the HMAC-SHA-1 algorithm and is adapted
to increase the counter value size representing the message in the HMAC calculation.
TOTP is a time version of this algorithm, where the value T, derived from the time and
time step, replaces the counter C in the HOTP calculation (2) [12].

TOTP (K,T) = Truncate(HMAC — SHA — 1 (K,T)) 2)

As we combine all methods described above we will receive a security system
which meets the goals defined for this work.

Conclusions. The result of the design and development is a system that
includes the methods in the main part, and can be used to protect the micro-service
systems.



64 ICSFTI2019 Section 1. SEC

References

1. Matt C. Digital Transformation Strategies / C. Matt, T. Hess, A. Benlian. //
Business & Information Systems Engineering. — 2015. — Ne57. — C. 339-343.

2. Newman S. Building Microservices / Sam Newman. — Sebastopol, CA:
O’Reilly Media, Inc., 2015. —472 c.

3. Evaluating the monolithic and the microservice architecturepattern to
deployweb applications in the cloud [Exexrponnwmii pecypc] / V.Mario, O. Garcés, H.
Castro,S. Gil.—2015.—Pexxum noctymy m0 pecypcy: https://www.researchgate.net/
publication/304317852 Evaluating_the monolithic and the microservice architectur
e pattern_to deploy web applications_in_the cloud.

4. Wootton B. Microservices-Not A Free Lunch! [Enexrponnuit
pecypc]/Benjamin Wootton.—2014.—Pexum JOCTYITY hi (o) pecypcey:
http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html.

5. Y. Sun, S. Nanda and T. Jaeger,"Security-as-a-Service for Microservices-
Based Cloud Applications," 2015 IEEE 7th International Conference on
CloudComputing Technology and Science (CloudCom), Vancouver, BC, 2015,
pp- 50-57.

6. Mirko Novakovic. Introducing Dynamic Focus for Application
Performance Management [Enexrponnuii pecypc] / Mirko Novakovic. — 2017. —
Pexum moctymy no pecypey: https://www.instana.com/blog/introducing-dynamic-
focus-application-performance-management/.

7. E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 / E.
Rescorla. — Mozilla: IETF, 2018. — 160 c.

8. B. JI. HupmoB. OcHOBb WHPOPMAIMOHHONW OE30MAaCHOCTH aBTOMATH-
supoBaHHbIX cucteM / B.JL. Lupmnos., 2008. — 119 c.

9. D. Hardt, Ed. The OAuth 2.0 Authorization Framework / D. Hardt, Ed..,
2012.-76c.

10. Sebastian E. Peyrott. The JWT Handbook / Sebastian E. Peyrott., 2017. — 85 c.

11. TOTP: Time-Based One-Time Password Algorithm / D. M'Raihi, S.
Machani, M. PeiTa in.]., 2011. — 16 c.

12. HOTP: An HMAC-Based One-Time Password Algorithm / D. M'Raihi, M.
Bellare, F. Hoornaert Ta in., 2005. - 37 c.

Autors

Minkov Kostiantyn — student of Department of Computer Engineering,
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.

E-mail: k.minkov-2017@kpi.ua

MinbkoB Koctsintun IlaBnoBuu — cryneHT kadeapu oOUYHCITIOBAIBHOL
TexHiku, HanionansHuil TeXHIYHUHN yHIBepcUTeT YKpainu « KUiBChKUN MOMITEXHITHHMA
iHCTHTYT iMeHi [ropst CikopchbKOTO».



Section 1. SEC ICSFTI2019 65

Viktor Selivanov — associate professor, Department of Computer Engineering,
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.

CeaiBanoB BikTop JleBoBuY — f011eHT, Kadenpa 00UUCTIOBAILHOT TEXHIKH,

Hamionanpamii TexHiuHU# yHiBepcuteT YKpainnm «KuiBChKHIA MONITEXHIYHUI
iHCTHTYT iMeHi [ropst CikopchbKOTO».

Volokyta Artem — associate professor, Department of Computer Engineering,
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.

E-mail: artem.volokita@kpi.ua

Bosnoxkuta Aprem MukosaiioBu4 — JOIEHT, Kadepa 00UMCITIOBATIbHOT TEXHIKH,

Hamionanpamii TexHiyHU yHiBepcuteT YKpainnm «KuiBChKHIA MONITEXHIYHUI
iHcTHTYT iMeHi [ropst CikopchbKOTO».

PO3SHINPEHA AHOTALIA

K. II. MinbKkoB,
B. JI.CexniBanoB, A. M. BoJjiokura

CUCTEMA 3AXHUCTY MIKPOCEPBICHUX CUCTEM

AKTYaJIbHICTh TeMH JOCJIIKeHHA. 3aBISKH IIBUJIKOMY BIIPOBAIKEHHIO
CHCTEM MIKpOCEpBiCY MK pi3HMMH KoMmmaHisiMu enekrpoHHoi kxomepmii (Netflix,
Amazon, Hailo) Buankia morpeba B 3aco0ax ix e)eKTUBHOTO 3aXHUCTY.

AHani3 ocTta”HHiX JociikeHb i myOaikauniii. Hesaxkaioum Ha BeNUKY
KUTBKICTh POOIT 1 JOCHIIKEHb, NPHUCBIYCHUX CHCTEMaM 3axXHCTy, 3aXHCT CaMHUX
MIKPOCHUCTEM JIOCUThH JIOKJIAJHO OTFCAaHA B JIITEPATypi.

BusiBjleHHSI HeJOCJHIIKEeHHX 4YACTHH 3arajbHoi mnpoduemu. IHTerpaiis
BIIOMHUX METOMIB 3aXHCTy B KOTepeHTHYy cucteMy. CTBOPEHHS CHCTEMHU 3aXHCTY,
OpIEHTOBAHOI Ha MIKPOCEPBICH.

Hini nocainxenns. Meroro nanoi poOOTH € cucTeMaTH3allis BiIOMUX METO/IIB
3aXUCTy Ta 1X KOHCOJIAAIli [Ii CTBOPEHHS €IUHOI CHUCTEeMH B KOHTEKCTI
MIKPOCUCTEMHHX CUCTEM.

BukJianeHHs1 0CHOBHOI0 MaTepianay. BuzHaueHO IpUYMHHU [TOSIBU Ta PO3BUTKY
CHCTEM MIKpOCEpBicy, X mepeBaru Ta 6a30Bi ypa3nuBocTi. B sikocti meToziB 6e3nexu
po3risinatrothes Taki crangaptu, sk HTTPS, JWT, OAuth2, RM, TOTP. Pe3ynbratom
€ CHCTEMa, pealli3oBaHa B Java BIJIOBITHO 0 CTaHIAPTIB MPOrpaMyBaHHS.

BucHoBku. Pe3ynpraToM po3poOKu Ta po3pOOKH € CHUCTeMa, IO BKIIOYAE B
ceOe OCHOBHI METO/M 1 MOXKe OyTH BUKOPHCTaHA JIJIsl 3aXUCTY CUCTEM MIKPOCEPBICY.



