Section 2. RT ICSFTI2019 111

UDC 004.7
Heorhii Loutskii,
Andrii Dolgolenko, Oleksandr Dolgolenko

METHOD OF SIMPLIFICATION OF COMPUTATIONS
WITH A FLOATING POINT IN THE SUPERSCALAR PROCESSOR

I'eopriii JIlyubkui,
Amnapiii loaronenko, Onexcanap Jloarosenko

CIIOCIBb CITPOLIEHHSA OBYUCJIEHD 3 IIVTABAIOYOIO KPAIIKOIO
B CYIIEPCKAJIAPHOMY INPOLLECOPI

This article describes results of development of the approach to building fast
operational device of adding-subtracting a long sequence of floating-point numbers
with dynamic branching of work at the level of RISCs, which without additional
software complications, will ensure the law of associativity when performing addition
of sequence of positive numbers. This paper describes the functional circuit of such
operational device which does not require for its work elements of firmware control.
The operational device can be implemented for SF and F formats of floating-point
numbers. For other formats such implementation of the operational device is more
reasonable to base on an algorithm similar to the Kahan 's algorithm.

Keywords: Operational Device, RISC Operations, Floating-Point, Law of
Associativity, Kahan's Algorithm.

Fig.: 1. Tabl.: 1. Bibl.: 8.

VY crarTi po3rISLAAETHCS MiAXIA 10 TOOYIOBH MIBUIKOTO OMEPAIIHOTO TPUCTPOIO
JI0/IaBaHHS-BiTHIMAHHS JIOBIOi IOCIIIOBHOCTI YMCEN 3 IUIABAIOYOI0 KPAIKo, mo 0e3
JOJIATKOBUX TIPOTPaMHUX YCKJIaHEHb 3a0e3[1eUnTh BHKOHAHHS 3aKOHY acOIlaTHBHOCTI
TIPY CKJIAJIaHHI TIOCITIIOBHOCTI JToJaTHUX urcell. Onrcana (yHKIIOHAIbHA CXeMa TaKOTro
NPUCTPOIO, KOTpa HE MOoTpedye sl CBOET pPOOOTH EIEMEHTIB MIKpOIpPOrPaMHOTO
kepyBaHHs. [lokazaHo, IO oOmNepariiHUi TPUCTPIA 3a II€I0 CXEMOI MOXe OyTH
peari3oBaHUM JUIsl TIOJIOBUHHOTO Ta OJMHAPHOro ()OpPMATiB TPEICTABICHHS YHCEN 3
IUIABAIOYOI0 Kpankoro. st crapmmx (opMaTiB MpeACTaBICHHS YHCEN 3 IUIABAI0YOI0
KPaIKoI0 peaiizaiis NoAi0HOTO OnepamniitHoro MpUCTPOIO BUMVISAAE OLTBII PO3YMHOIO Ha
OCHOBI alropuTMy, nofioHoro qoanroputmy Kexena.

KawuyoBi ciaoBa: omepaniiiauii TpuCTpiid, CKOpouyeHH HaOip omepari,
IJIaBaroyva Kparmka, 3aKOH acolliaTUBHOCTI, anroput™m Kexena.

Puc.: 1. Ta6m.: 1. bi6m.: 8.

Target setting. When constructing cores of most of the modern microprocessors
with the x86-64 architecture, OoOE (Out-of-Order Execution) technology, based on the
implementation of a Restricted Data Flow (RDF) [1,2], is used. Such microprocessors are



112 ICSFTI2019 Section 2. RT

called superscalar microprocessors [3], or microprocessors with the CISC-RISC (CISC-
outside RISC-inside) architecture, where: CISC - Complex Instruction Set Computing
(full set of operations of x86-64 architecture), RISC - Reduced Instruction Set Computing
(short set of operations implemented by a number of microprocessor operating devices).
RISC is also called: uop, micro-ops, pops, or similar terms.

In the process of operating the cores of such microprocessors, a number of CISC
commands, currently active in the flow of commands, are simultaneously decoded into a
plurality of RISC operations. RISC implementation planning is performed according to
the RDF architecture, based on the readiness to execute RISC operations operands. Prior
to RISCs obtaining the ready to execute status, they are placed in the reserve station cells
[4-5]. RISC, which became ready to execute, can be transmitted from cell reservation
station to a free operating device that can execute it. Thus, in modern microprocessors,
dynamic parallelism is organized at the level of RISCs.

When forming CISC flows — commands that operate with floating point
operands, both programmers and developers of optimizing compilers must take into
account features of specific implementations of arithmetic with floating-point [6]. As a
consequence of these features, for example, floating-point arithmetic does not perform
standard mathematical laws such as commutative and associative [7] and it is possible
to do so that the calculated answers almost entirely consist of "noise" [7].

For example, multiplication and division operations do not greatly increase the
relative error, but subtracting almost equal quantities can significantly increase it. One
of the consequences of the possible unreliability of the addition operation sequence of
floating-point numbers is a violation of the law of associativity: (u+v) +w#u+ (v +
w) for some u, v, w. The distributive law that binds the operations x and +: u x (v + w)
# (u x v) + (u x w) may also be violated. Performing addition and subtraction
operations sequence numbers even with fixed-point is known as [7] left-associative.
This means that operations in such an arithmetic expression must be strictly executed
from left to right. Even guidelines for programmers are developed, that contain
recommendations for the organization of computing with fewer errors [7]. For
example, if you want to add a long sequence of positive numbers [7], you should first
sort them out and perform operations starting with the smallest numbers.

Analysis of these guidelines shows that it is often difficult to carry out such rules
for the programmers, for example, because unknown values of variables, because the
need for pre-sorting of numbers by size, etc. The implementation of such guidelines by
the compiler at the stages of preparation for computing is also difficult for the same
reasons. In addition, the implementation of these rules, such as the need to change the
order of filing operands when performing addition sequence of positive numbers with
floating-point, creates the complexity for organizing parallel calculations.

To reduce the error of adding-subtracting a long sequence of floating-point
numbers, Kahan 's algorithm, which is also known as compensatory summation, is used
[8]. Reducing the error is achieved by introducing an additional variable to store a



Section 2. RT ICSFTI2019 113

growing amount of error. With compensating summation, the worst error does not depend
on the number of operands, so a large number of operand values can be combined with an
error that depends only on the accuracy of the floating-point representation format. But
according to this algorithm, each operation of addition-subtraction is transformed into
4 operations of addition-subtraction type and 4 assignment operations.

The research objective. The purpose of this project is to develop the approach
to building fast operational device of adding-subtracting a long sequence of floating-
point numbers for dynamic branching of work at the level of RISCs, which without
additional software complications, will ensure the law of associativity when
performing addition sequence of positive numbers.

The approach to creation of the operational device. Ensure the implementation
of the associativity rule for the addition operation over a sequence of positive of floating-
point numbers without additional software complications is possible if you perform
computation of all intermediate results without losing significant bits.

Consider the possibility of constructing an operational device (OD) for adding-
subtracting a sequence of floating-point numbers, which performs the operation o = o
+ x at each step of the calculation, where: x is the next operand of the sequence that
can be taken at each step of the calculation on OD inputs for processing; o - an
intermediate result of addition-subtraction of a sequence of numbers. To increase the
accuracy of the o in the OD will be calculated with an accuracy that is limited only by
the range of order change and the accuracy of the representation of the mantissa of the
processed format [6]. At the beginning of computing a new sequence of numbers o
will be zeroed. Simultaneously with the calculation of the new value of o, its previous
value will be converted to the processed numeric format with the rounding to the
nearest [6] and output to the OD outputs. Suppose that at the OD input, according to
standard [6], each floating-point number x has the form: x =f, - 2, where: f, is a n-
bit normalized (I < / fx / <2, with x # 0) fractional part of the number x (mantissa); e, -
number order (unsigned integer from interval [e,.» 0]); fr and e, are represented by a
direct binary code. The floating-point number has two characters: a sign number (sign),
displayed in a separate bit; the order sign, is displayed by the bias of the order [6].

The schematic design of OD addition-subtraction operations over a sequence of
floating-point numbers with increased accuracy of execution is shown in Figure 1. His
work is as follows.

Filing of the operands is one at a clock (see fig.1) of work of the OD. So, on the
i-th clock of the work on the inputs of the OD, a regular operand (number x) is given.
In this case, the control node 1 is its transformation from a processed floating-point
number format [6] to the internal range of processing numbers r, where r = e, +1+n
and is the number of binary digits in the representation of a fixed-point number.
Namely, the input f, is given by a normalized mantissa of the operand, the input e, is
the order of the operand, the input sign, - sign of the operand. With the arrival of the
front edge of the clock pulse on the input clock data are recorded, respectively, in the



114 ICSFTI2019 Section 2. RT

registers of the mantissa RG f,, the order RG e, and the trigger control 7g sign,. At the
same time, if the number x is the initial operand of the new sequence of numbers, the
value of RG f, is reset using the reset signal.

clock -1 ,J‘; m_,f-' i | gy
e L T_, i
¥ L 3
RG 1, RG e, Tig sign.
i} iy mi
o , ,J !
WUX T DC
: ]
1 nj ml
EBlock keys —
r ] 2
- _.I': f‘ w‘;r.ﬂnw
el
M i J i
resel T RG S
W relf r-f?_l__
1F ¥ ¥
I" MUX 2 3
: }
TR I 4J
T
4 '
(e P i 11 L L e 1
X + ‘r h "1
OR 1 e Ay ]
$lemerminy ! _ -
ROM ) ny - ng
773 I5) 0 W e MUX 3 )
. vfm._._
-]
[ F [ k. - "*
| T sigin, ) Ry -ﬁ"; . RG fﬂi’
.I‘Hi 5 B
log, 2n-1) —
Coder i, "[ " b ﬁ
ml my L] I3 :u.;'l
™ ap ™ MUX &
e, iy
e | CTR 2 fe 1
. ¥
MWMUX S5
3 & |
1] 1 4 H-l
"?"lf.l;"ﬂu i‘:ﬁ "f,.- i!;

Fig. 1. Functional operating device (OD) addition-subtraction operations scheme



Section 2. RT ICSFTI2019 115

With the MUX 1 multiplexer and depending on the sign, value, the transfer of RG
fr from the mantissa f, code to the Block keys input with the recovery of the hidden bit
MSB [6] and the sign, is carried out. Depending on the value of the order e,, on one of the
outputs of the DC decoder, a signal is generated that provides the input of the Block keys
to the first input of the adder ) f;,. As a result of this transfer, the arithmetic left shift of the
inverse code f, is carried out with MSB and sign, on e, bits, and all other lower bits of the
first input of the adder }f, are filled with the value of the sign,, which, together with the
submission of the sign, also to the input of the junior carry input adder }f, provides
formation supplementary code x, brought to the r range.

On the (i+1)-th step of the OD's work on its inputs, a regular operand of a
computable sequence can be taken. At the same time, in the register RG f, in the node
2 summation from the outputs }f,, the result of the summation of the previous operand
will be recorded, and in the trigger Tg sign, and registers: RG e,’ and RG f,’ in the
node 3, the result will be written, respectively: the sign, order and mantissa are
partially normalized the previous value of o (from the summation of the operand that
could be taken at the inputs of the OD on the (i-1)-th step of his work).

Thus, OD represents a conveyor information converter consisting of three
segments. At each step of the OD's work on its inputs, a regular value of the number x
of the executed operation 0 = 0 + x, in the general case of different microprocessor
cores (from the core that captured the OD clock cycle) can be taken. If any of the cores
need to perform the operation o = o - x, the sign, value applied to the OD inputs must
be changed to the opposite.

Simultaneously with the summation on )f, of the number x with the
accumulated amount f,, which flows from the register of RG f, to the second input ) f;,
an overflow signal is generated (as the sum of modulo 2 of the two highest bits ) f,),
which indicates about the output of a new value of f, from the range r. In the node 3
forming result transfers the previous accumulated amount of f, to an intermediate
representation in a floating-point form with a 2n-digit binary code of the mantissa of
the f,’ result in the forward code and the m-bit value of the order corresponding to the
£} mantissa. To do this, first, the f, value from RG f,, using the MUX 2 multiplexer
and the CTR 1 counter, is translated into a straight-line code, and from its
representation the sign, is deleted, which is written to the Tg sign, at the next cycle of
the work of the OD. Then with the help of a group of ORI formed address entry to
permanent memory ROM (actually the older nonzero group of binary digits is found in
fo). The ORI group consisting of [ (emaxtn)/n | n-inputs elements “OR” (the senior
element in the group has (e,.,tn)modn inputs. At this address, from the first ROM
outputs, the value of the order e,’ is read, which corresponds to the finding of the
higher significant digit f, on the lower-rank position of the older non-zero binary digits
in f;. This read-out value of the order e, is written to RG e, at the next time the OD
works. From the second output ROM the zero address reads a zero signal, which
indicates that f, = 0. In this case, from the first ROM outputs, the zero value of the



116 ICSFTI2019 Section 2. RT

order of e, is read [6]. From the third ROM outputs at the address formed in OR I, the
control information is read out to the MUX 3 multiplexer. This information provides
the passage from the outputs CTR I through MUX 3 to the RG f," inputs only of the
highest non-zero binary digits group f, and the discharges group that is next after by
her. At the next cycle OU work, these two groups of digits are written to RG f,,".

In the next work of the OD normalizing the mantissa of the result f;, is achieved
by removing the hidden bit, its rounding to the nearest, and making the corresponding
correction to the value e,. To do this, using the encoder, depending on the number of
zeros to the first significant bit in f,, the control information is generated by the MUX
4 multiplexer. This information provides the passage from the outputs of RG f,’
through MUX 4 to the inputs of the CTR 2 counter n of the highest significant bits f;,
shifted left to k bits, where k is the number of zeros to the first significant bit in f,. In
this case, the first significant bit in f, on the inputs of the CTR 2 counter is not
transmitted, which provides for the removal of the hidden bit. At the same time, at
other encoder outputs, generates correction an order of e, equal to (e,.,+n)modn-k is
formed, if the first significant bit in the direct code f, was found in the older group of
digits, or n-k in all other groups of digits. With the help of the ), adder, this
correction is added to the value e, that arrives at the other inputs of the adder from RG
e,’ and is summed up with the value of the carry input entry of the adder coming from
the counter CTR 2 and indicates the overflow of the mantissa f, as a result of its
rounding to the nearest [6]. The result of this so that the value of the mantissa f,, as
well as without the CTR 2 overflow signal, will be normalized, rounded and deleted
with a hidden bit and is output from the outputs of CTR 2 through a group of (n-1) 2-
inputs elements “4ND” to output f, OD. Thus, from the outputs e, through the input
0 multiplexer MUX 5 output e, OD issued value of the order of the intermediate result.
When the carry signal from most significant bit ) e, appearing, indicating the overflow
e, 1.e. e, > e, according to [6], the output of £, OD gives a zero value, and the output
e, OD, through the input 1 of the multiplexer MUX 3§, gives the value of e,,4,.

Table 1 summarizes the values of the bits of the main OD blocks for different
formats of representation of floating-point numbers, according to [6].

Conclusions. The paper describes the possibility of constructing an operational
device for addition-subtraction of a sequence of floating-point numbers with an
accuracy that is limited only to the range of order change and the accuracy of
representation of the mantissa of the processed format.

This approach to constructing the operational device of addition-subtraction of
a sequence of floating-point numbers looks very promising due to the simplification of
the computational process from the programmer's point of view, because it ensures
implementation of the associativity law when performing addition of sequences of
positive numbers, without additional complications required on the software level.

The paper describes the functional circuits of such an operational device, which
does not require elements of firmware control for its work. As it can be seen from the



Section 2. RT ICSFTI2019 117

table 1, the operational device, under the current technological level of components
development, can be implemented for SF and F formats of floating-point numbers [6].
For other formats such implementation of operational device is more reasonable to
base on an algorithm similar to the Kahan 's algorithm.

Table 1

The values of the bits of the main OD blocks for different formats of
representation of floating-point numbers

Main OD blocks SF F DF DEF OF
RGf. 10 23 52 64 112
RG e, RG e,
Se.. MUX § 5 8 11 15 15
MUX 1, MUX 4, CTR 2 11 24 53 65 113
RGf,, Y, 43 280 2101 32833 32881
MUX 2, CTR 1 42 279 2100 32832 32880
OR 1 4 12 40 506 291
ROM 16x8 | 4Kx13 | Tx18 | 2%x25 | 29'x25
MUX 3, RG £, 22 48 106 130 226
References

1. Y. Patt, W. Hwu, et al, Experiments with HPS, a Restricted Data Flow Micro
architecture for High Performance Computers, Digest of Papers, COMPCON 86,
(March 1986), pp. 254-258.

2. M. Simone, A. Essen, A. Ike, A. Krishnamoorthy, T. Maruyama, N. Patkar,
M. Ramaswami, M. Shebanow, V. Thirumalaiswamy, D. Tovey (1995). Implementation
trade-offs in using a restricted data flow architecture in a high performance RISC
microprocessor. New York. pp. 151-162.

3. John L. Hennessy, David A. Patterson. Computer Architecture. A Cuantitative
Approach, USA, Morgan Kaufmann, 2012 — 497 p.+ add-ins.

4. Kanter, David (November 13, 2012)."Intel’s
Microarchitecture" (http://www.realworldtech.com/ haswell-cpu/).

5. J.Shen, M. Lipasti. Modern Processor Design: Fundamentals of Superscalar
Processors. Waveland Press, 2013- 642 p.

6. IEEE 754: Standard for Binary Floating-Point Arithmetic / 3 april 2014. —
URL: http://grouper.ieee.org/groups/754/.

7. What Every Computer Scientist Should Know About Floating-Point
Arithmetic. =~ —  URL:  https://ece.uwaterloo.ca/~dwharder/Numerical Analysis/
02Numerics/Double/paper.pdf.

8. Higham, Nicholas J. Accuracy and Stability of Numerical Algorithms.
SIAM, 2002, pp. 110-123.

Haswell CPU



118 ICSFTI2019 Section 2. RT

Autors

Heorhii Loutskii — professor, Department of Computer Engineering, National
Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.

E-mail: georgijluckij80@gmail.com

Jlyubkmii I'eopriii MuxaiijoBuu — mpodecop, kadeapa oOGUHCIIOBATBHOT
TexHik, HanionansHuil TeXHIYHUHN yHIBepcUTeT YKpainu «KUiBChKUN MOMITEXHIYHAMA
iHCTHTYT iMeHi [ropst CikopchbKOTO».

Andrii Dolgolenko — PhD student, Department of Computer Engineering,
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.

E-mail: andrew(@ncube.co.uk

Jloaronenko Anapiii OJiekcaHAPOBMY — acipaHT, Kadeapa 00UnCITIOBATBHOT
TexHiku, HanionansHuil TeXHIYHUE yHIBepcUTeT YKpainu «KUIBChKUN MOMITEXHITHHAMA
iHCTHTYT iMeHi [ropst CikopchbKOTO».

Oleksandr Dolgolenko — associate professor, Department of Computer
Engineering, National Technical University of Ukraine “Igor Sikorsky Kyiv
Polytechnic Institute”.

E-mail: aleks.dolgolenko@gmail.com

Hoaronenko QOuexkcanap MukoJaioBu4 — JOLEHT, Kadempa oOdYHCITIO-
BaJbHOI TexHikM, HarionanpHMid TexHiUHUN yHIBepcuTeT Ykpainn «KuiBcbkuid
MOJITEXHIYHUHA 1IHCTUTYT iMeHi [rops CikopchbKOTo».

PO3SHINPEHA AHOTALIA

I'eopriii JIlyubkui,
Amnapiii loaronenko, Onexcanap Jloarosnenko

CIIOCIBb CITPOLIEHHSA OBYUCJIEHD 3 IIVTABAIOYOIO KPAIIKOIO
B CYIIEPCKAJIAPHOMY INPOLLECOPI

AKTyaJbHicTh TeMH AociaifzkenHs. [Ipu moOymoBi siaep OLIBIIOCTI CydacHUX
MIKpOIIPOLIECOPIB 3 apXIiTEKTYpOIo x86-64 BUKOpHUCTOBY€eThCs TexHouoris QoOFE (Out-
of-Order Execution), mo 3aCHOBaHa Ha peaiizaimii 0OMeXeHOi apXiTeKTypH IMOTOKY
naaux (Restricted Data Flow (RDF)). Taki MIKpOnpoIecOpu OTpUMAIHN HAa3BY
CyNepCKaISIpHUX MiKpomporiecopiB, abo MikpomporecopiB 3 apxitekryporo CISC-
RISC («CISC-outside RISC-insidey»), ne: CISC - Complex Instruction Set Computing,
RISC - Reduced instruction set computing (CKOpoueHHM Hablp KOMaHJ, IO
peanizyeTbCs MHOKHUHOIO OTNEpallIiHUX MIPUCTPOIB sAJIpa MIKPOIPOIIECOpa).



Section 2. RT ICSFTI2019 119

IMocranoBka npodaemu. Ilpu ¢opmysanni morokiB CISC — komaHz, M0
OTIEPYIOTH OTIEpaHIaMH 3 TUIABAIOUOI0 KPAIKOI0, SIK MPOrpamicTaM Tak i po3poOHUKaM
ONITUMI3YIOUHX KOMIIUJISTOPIB JTOBOJUTHCS BpPAaXOBYBaTH OCOOIMBOCTI peamizarii
apu(METHKHU 3 IJIaBAIOYOI0 KpParkoio. B Hachmigok mux ocoOamBocTeH, HampuKiIan,
s apu(METUKHU 3 TUTABAIOYOI0 KPAIKOI0 HE BHUKOHYIOTHCSI CTaHAAPTHI MaTeMaTH4HI
3aKOHHM, TaKi K KOMYTaTHMBHHUI Ta aCOIIaTHBHHIA 1 HEBAXKO TaK HEBIAIO MPOBECTH
oO4uCcIieHHs, 00 1X BIAMOBIII MaiXe IMIJIKOM CKIafanucs i3 "mymy".

AHaJi3 ocTaHHIX AocaikeHb i myOJikaniii. Ilporsrom ocTtaHHIX PpOKiB,
noOyToBa s/IEp CYNMEPCKATSIPHUX MIKPOMPOLECOPIB IPYHTYETHCS HA TOMY, LIO JEsAKa
kibkicTh CISC — KOMaHJ, aKTUBHOTO B JaHWH MOMEHT TIOTOKY KOMaH]], OJTHOYaCHO
nekoayeTscsi Ha MHOXUHY RISC— omepaniii. IlmanyBanns BukoHanHs RISC —
oriepariii 3MIMCHIOETHCS BIAMIOBITHO 70 apxXiTekTypu RDF, Ha mifcTaBi TOTOBHOCTI 110
BUKOHaHHS omnepaHaiB RISC — omepamiii. Jlo HabyBanus RISC — onepamisiMu CTaHy
TOTOBHOCTI 0 BUKOHAHHS, BOHH PO3MIIIYIOTHCS B KOMIpKax CTaHILIi pe3epByBaHHS.
RISC — onepariisi, kKoTpa HaOyJia CTaHy TOTOBHOCTi, MOKe OyTH TIEpeIaHOI0 3 KOMipKU
CTaHIIi pe3epByBaHHS B BUIBHUI OMNEpalliiHUA MPHUCTPid, MO MOXE ii BUKOHATH.
TakuM 4MHOM B sapax Cy4YaCHUX MIKPOIPOIIECOPAX OPraHi30BYEThCS TUHAMIYHHI
napanenizM Ha piBHI RISC — omnepariii (iX TakoXX Ha3UBAKOTh: UOP, MICrO-0pPS, UOPS,
a00 TOIIOHMMU TEPMiHAMH).

BujgisieHHsi HeZOCTiXKEHUX 4YACTHH 3arajbHoi mnpodjemu. [lama crarrts
NPUCBSTYEHA BUBUYEHHIO Ta aHATI3Y MiIX0Ay 10 MOOYI0BH OLIbII TOYHOTO OMEPAITHOTO
MPUCTPOIO CyMaTOpPa-BiTHIMa4a MOCIIIOBHOCT] YHCEII 3 IIABAI0Y0I0 KPAITKOIO.

IMocranoBka 3aBaaHHs. 3aBIaHHSIM € PO3POOKA IIBUIKOIIFOUOTO OMEPAIiHOTO
NPUCTPOIO CyMaTOpa-BilHIMAua 3 IUIABAIOYOIO0 KPAIKOIO SIKMA MOXe OyTH BHKO-
PUCTAaHUMH ISl JUHAMIYHOTO PO3TaTyKeHHSI pOOOTH CYNEPCKAISIPHOTO siipa Ha PiBHI
RISC — onepauiii 1 mpu 11boMy, 0€3 TOAATKOBUX MPOTPAMHUX YCKJIAIHEHb, 3a0€3MeUNTh
BHUKOHAHHS 3aKOHY KOMYTAaTUBHOCTI JIJIsI JIOBT'O1 TTOCITiTIOBHOCTI JIOJJATHUX YHCEIL.

BuxknaneHns ocHoBHOro marepianay. Po3risHyto miaxing g0 mnoOyaoBU
MIBUIKOTO OMEPAIIfHOTO MPHUCTPOIO J0JaBaHHSA-BIIHIMAHHS JIOBTOI IOCIITOBHOCTI
qycesl 3 TUIABAIOYOI0 KPAImKolo, M0 03 JOAATKOBUX MPOTPaAaMHUX YCKIIATHEHb
3a0€3MeYnTh BUKOHAHHS 3aKOHY AaCOLIATUBHOCTI NP CKJIAJaHHI MOCIIJOBHOCTI
nonatHux uucen. OnucaHa (QyHKIIOHAJbHA CXEeMa TaKoro IPHUCTPOI0, KOTpa HE
noTpedye A CBO€l poOOTH €IEMEHTIB MIKPOIIPOTPAMHOI'O KEPYBaHHSI.

BucnoBku. OmnepatiiHuii NpUCTpiii 3a PO3IJISTHYTOIO CXEMOKIO MOXKe OyTH
peaizoBaHUM JUisl TOJOBHHHOTO Ta OJAMHAPHOro (opMaTiB MpPEACTABICHHS YMCEN 3
TIaBAIOYOr0 Kpamkoro. st crapmux ¢opMaTiB MPEACTaBICHHS YHUCEN 3 IUIABAI0YOI0
KpaIKoro peaiizailisi MoAiI0OHOT0 ONepaliitHOro NPUCTPOIO BUTIISAIA€ OUIBIIT JOLIBHOIO
Ha OCHOBI BUKOPHUCTaHHs aJIrOPUTMY, IToA10HOro 10 aniroputmy Kexena.

KawuoBi ciaoBa: omepamiiiHuii TpuCTpiid, CKOpoueHH HaOip omeparii,
TIaBaroya Kparka, 3aKOH acoIliaTUBHOCTI, anroputM KexeHa.



