144 ICSFTI2019 Section 3. Al

Yehor Zakupin, Valery Pavlov

CREATING TRANSLATORS OF HIGH-LEVEL
PROGRAMMING LANGUAGES

€rop 3akynin, Banepiii [1aBios

CTBOPEHHS IEPEKJIAJAYIB
MOB ITPOI'PAMYBAHHSA BUCOKOI'O PIBHSA

The paper deals with the creation of a program-translator for high-level
programming languages. Analyzed the principles of building such applications and
existing solutions. The program takes as a basis the structure of the translator, using as
the input and output language - a high-level language. The program also allows you to
choose the input and output languages.

Key words: programming language, translator.

Fig.: 4. Tabl.: 0. Bibl.: 8.

VY crarTi po3rNIAgaEThCs MUTAHHS CTBOPEHHS MPOTpaMu-TiepeKiagada s MOB
IporpamMyBaHHS BHCOKOTO piBHA. [IpoananizoBaHi mpuHIUNHM TOOYAOBU MOAIOHMX
mporpaMm Ta icHyroui pimenss. [Iporpama Gepe 3a OCHOBY CTPYKTYpy TPaHCISITOPY,
BUKOPHCTOBYIOUHM B SIKOCTI BX1JIHOT Ta BUXiTHOI MOBH — MOBY BHCOKOTO piBHS. Takox
nporpama Hajae 3MOTy BUOOPY BX1IHOI Ta BUXiTHOI MOBH.

KirouoBi ci10Ba: MoBa mporpaMmyBaHHs, IEpeKIIagay.

Puc.: 4. Ta6:.:0. bi6i.: 8.

Relevance of research topic. A steady increase in the number of high-level
programming languages can create significant problems when creating unified
software. This necessitates the creation of an interpreter to facilitate and accelerate the
development of software through the use of existing modules, regardless of the
programming language in which they were written.

Target setting. The lack of programs that allow you to flexibly select incoming
and outgoing languages, as well as the unreliability of existing solutions due to the
lack of analysis of input text, which greatly complicates the use of such software.

Actual scientific researches and issues analysis. Typically, the translation of
programs from one programming language to another is based on the theory of
constructing compilers [1, 2, 3], but for the case when both the input and the output
languages are high-level languages only cross-compilation is considered. There is a
fairly small number of publications devoted to the problem of translation of
programming languages. Whether they are solving local problems [4], or are based on
outdated versions of programming languages [5], or are purely commercial projects,

Section 3. Al ICSFTI2019 145

where only demo versions are offered on a free basis [6, 7]. For example, you can
specify "Java to C ++ Converter" as well as "ANSI / Turbo Pascal to C / C ++
converter", the main disadvantage of which is their strict attachment to the input and
output languages. Also, in some such programs there is a lack of semantic verification
systems.

Uninvestigated parts of general matters defining. The article proposes an
analysis of the application of a new approach for translating between high-level
programming languages. It is based on the use of pre-analysis of the text of the input
language, as well as the use of external data to provide information on programming
languages.

The research objective. The objective is to create a software application that
allows you to transfer incoming text written in a high-level language, also at another
high-level language. In this case, the program should conduct a preliminary analysis of
the input text, and information on the structure of programming languages to take from
external files.

The statement of basic materials. The solution method can be divided into
two stages. In the first stage, the syntax of the programming language will be written,
since the work of the translator depends on the form in which the syntax will be
written. At the second stage, is developing a translator.

Method of writing language syntax. It is recommended to use the Backus -
Naur form for language descriptions. In contrast to the meta-language of Chomsky or
Chomsky-Schutzenberger, which were used in mathematical literature in the
description of simple abstract languages, this meta-language was first used to describe
the syntax of the real programming language Algol 60 [8]. Along with the new
symbols of metacharacters, it used meaningful designations of non-terminals. This
made the description of the language more vivid and allowed to continue to widely use
this universal notation to describe the real languages of programming.

Developing a translator. Common properties and patterns are inherent in
different programming languages, as well as translators from these languages. They
have similar processes of converting the source text. In spite of the fact that the
interaction of these processes can be organized in different ways, one can distinguish
the functions, implementation of which leads to the same results. We call these
functions the phases of the translation process. They determine the overall structure of
the compiler, shown in Fig. 1.

It stands out:

1. The phase of lexical analysis.

2. The phase of syntax analysis, consisting of:

* recognition of syntactic structure;

* semantic parsing, in the process of which the work with tables is performed,
the generation of an intermediate semantic representation or an object model of
language.

146 ICSFTI2019 Section 3. Al

3. The code generation phase, implementing:

 semantic analysis of the component of the intermediate representation or the
object model of the language;

* Intermediate representation or object model translation into object code.

Along with the main phases of the translation process, additional phases are
possible:

2a Phase of research and optimization of the interim report, consisting of:

2a.1. analysis of the correctness of the interim presentation;

2a.2. optimization of the interim presentation.

3a The phase of optimization of the object code.

In addition, we can select a single process for all phases to analyze and correct
the errors that exist in the original source code of the program.

| Sequence of
characters that
defines the text of
the input program

-

€— lexical analyzer

Sequence of tokens

.-

error analyzer < Syntax Analyzer
Interim
z submission of the
r program

Error messages

Code generator

! : ! Object code

Fig. 1. Structure of the compiler

A

The syntax analyzer (Fig. 2.) performs the analysis of the input program using
the received tokens, the construction of the syntactic structure of the program and
semantic analysis with the formation of the object model of language. The object
model represents a syntactic structure complemented by semantic links between
existing concepts. These connections can be:

» references to variables, types of data, and procedure names that are placed in
the names tables;

* links defining sequence of execution of commands;

* links defining the attachment of elements of the object model of language and
others.

Section 3. Al ICSFTI2019 147

Thus, the parser is a fairly complex block of the translator. Therefore, it can be
divided into the following components:

* recognizer;

* semantic analysis unit;

* an object model, or an intermediate representation, consisting of a table of
names and a syntactic structure.

&_‘ ‘The sequence of tokens

) Semantic
Recognizer _L/
analyzer
7 *

Transmission . L/ Data entry
control

Syntactic

E structure .
! \ i
; :
' Semantic
] relations !
] i

E Object model, or pad value '

Name table

I 3

Fig. 2. The general scheme of syntax analyzer

Recognizer receives a chain of tokens and on its basis performs analysis in
accordance with the rules used. Lexems, with successful parsing of rules, are
transmitted to a semantic analyzer, which builds a names table and captures fragments
of the syntactic structure. In addition, between the table name and syntactic structure
recorded additional semantic relationships. As a result, the object model of the
program is formed, freed from the binding to the syntax of the programming language.
Quite often instead of a syntactic structure, it completely copies the hierarchy of
objects of the language, creating its simplified analog, called intermediate
representation.

Error analyzer receives error information that occurs in different blocks of the
translator. Using the information he receives, he generates a message to the user. In
addition, this unit may try to correct the error to continue the analysis further. It also
relies on actions related to the correct completion of the program in the event that it is
not possible to continue the subsequent translation.

The code generator builds the code based on an analysis of the object model or
intermediate representation. The construction of the code is accompanied by additional

148 ICSFTI2019 Section 3. Al

semantic analysis. At the stage of this analysis, the possibility of conversion is finally
determined and effective options are selected. Code generation itself is the re-coding
of some commands to others.

An important role in the algorithm is played by the code optimizer, which in
this implementation is proposed to embed in the structure of the code generator. The
role of the optimizer - before building the code, degrade it, to improve the
compatibility of languages, and after the construction - optimize for a better result.

The importance of the previous decomposition of complex structures, on
simpler (degradation), is the irreversibility of some transformations. For an example,
let's take C ++, Java and Pascal. At first glance, the structure of these operators is very
similar (Fig. 3), but if the Pascal language checks and increments (decrements) occur
exclusively with the cycle variable in the beginning, in C ++ and Java, the cycle
variable, verification and transformation may has nothing in common. Therefore, it
makes sense to schedule such a cycle in languages C ++ and Java in the form:

for (<set initial conditions >; <condition>; <variable transform>)

{<body of the cycle}

in the form of:

<set initial conditions>;

while (<condition>) {

<body of the cycle >;
<variable transform>;

}

In this form, any C ++ and Java language cycle can be translated into Pascal
without causing errors.

setting setting
conditions conditions
e
/ //
checking end checking end
Body of the Body of the
cle cycle
]
Convert a [ncrement
variable {decrement)
of a variable

Fig. 3. The structure of cycle “for” a) in Java and C ++ languages; b) in Pascal

Section 3. Al ICSFTI2019 149

Due to such differences, there is a problem of the irreversibility of some
transformations. As we see from Fig. 4. If there are only three languages, and one
operator, the big part of the transformations can not be inverse. That is why the equally
important part is the correct formation of relations between operators, and their
structure at the stage of writing syntax languages.

@
00

Fig. 4. Ability to convert operator for to other languages

Conclusions. The paper shows an approach to solving the problems of creating
a high-level programming language translator. This is achieved through the use of a
full-fledged translator model that includes an error detection system, as well as the use
of language syntax descriptions and code optimization, which allows for the creation
of correct relationships between similar high-level structures.

References

1. Axo A., Yapman [Ix. Teopuss CHMHTaKCHMYECKOIO aHallu3a, NEpeBOJa U
KoMmuianuu. - M.: Mup, 1978.

2. Kaydpman B. III. S3p1km mporpammupoBanus. KoHIenuuu u NpuUHLIUIIEL. -
M.: Pagmo u cBs3p, 1993. - 432 c.

3. Jlerouc @., Pozenkpanuy Jl., Crpunz P. Teopernueckue OCHOBBI
IIPOEKTHUPOBAHUS KOMIIUIATOPOB. - M.: Mup, 1979.

4. Brian Alliet. Complete Translation of Unsafe Native Code to Safe
Bytecode. Rochester Institute of Technology. URL: http://www.megacz.com/
berkeley/research/papers/nestedvm.ivme04.pdf. (mata 3Bepuenns: 09.08.2009).

5. C2J Converter. URL: http://tech.novosoft-us.com/jsps/downloads.jsp. (nara
3BepHeHHs: 11.11.2001).

6. C to Java Translation. Migration Technology Systems. URL:
https://www.mtsystems.com. (mgara 3BepHerss: 01.02.2018)

7. Our Source Code Converters. Tangible Software Solutions Inc. URL:
https://www .tangiblesoftwaresolutions.com/index.html. (zata 3Bepuenns: 02.05.2019).

8. J. W. Backus. The Syntax and Semantics of the Proposed International
Algebraic Language of the Zurich ACM-GAMM Conference. Proceedings of the
International Conference on Information Processing, UNESCO, 1959, pp.125-132.

150 ICSFTI2019 Section 3. Al
Authors

Pavlov Valery - associate professor, Ph.D., Department of Computer
Engineering, National Technical University of Ukraine “Igor Sikorsky Kyiv
Polytechnic Institute”.

E-mail: pavlovvg@ukr.net.

ITaBaoB Baaepiii I'eopriiioBu4 — 1oueHT, K.T.H, kKadeapa 00UUCIIOBATBHOT
TexHiku, HanionansHuil TexHiuHU# yHIBepcuTeT YKpainu « KuiBChKuil mOMITEXHIYHUN
iHCcTHTYT iMeHi [ropst CikopchbKOTO».

Zakupin Yehor — student, Department of Computer Engineering, National
Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.

E-mail: egoza343@gmail.com.

3akynmin €rop OJiekcaHApPOBMY — CTyAEHT, Kadeapa OOYMCITIOBAIBHOL
TexHiku, HarionansHuil TexHIYHUHN yHIBepcuTeT YKpainu «KuiBChKUN MOMITEXHIYHUHA
iHcTHTYT iMeHi [ropst CikopchbKOTo».

PO3SHINPEHA AHOTALIA

€rop 3akynin,
Bauepiii IlaBiioB

CTBOPEHHS HIEPEKJIAJAYIB MOB ITPOI'PAMYBAHHSA
BUCOKOI'O PIBHSA

AKTyaJbHicTh TemMu aociaigxenHs. I[loctiliHe 30UIBIIEHHS KUTBKOCTI MOB
MPOTrpaMyBaHHS BUCOKOTO PIBHS MOKE€ CTBOPIOBATH CYTTEBI MPOOIeMH MPH CTBOPEHHI
YHI(IKOBAaHOTO MPOrpamMHOro 3abe3nedeHHs. TakuM YMHOM BHHUKa€E HEOOXIIHICTDH
CTBOPEHHSI IMEpeKiajada JuUlsl MOJICTIIEHHS Ta MPUCKOPEHHS PO3pOOKH MPOTPaMHOTO
3a0e3neveHHs 3a paXyHOK BUKOPHCTAaHHS BXKE ICHYIOUHMX MOJYJIIB B HE3AIEKHOCTI Bix
MOBH MPOTpaMyBaHHsI, Ha SIKi BOHH OyJIM HaIMCaHi.

IlocTanoBka mnpodiaemu. BiacyTHicTe mporpam, IO J03BOJSUIM THYYKO
BHOMpATH BXiJHI Ta BUXIiJHI MOBH, a TaKOXX HEHAJIWHICTh ICHYIOUYHMX DIIIEHb Yepe3
BIJICYTHICTh aHaJi3y BXIJHOTO TEKCTY, IO 3HAYHO YCKJIAIHIOE TPOIEC BUKOPUCTAHHS
MoIiI0HOTO MPOTPAMHOTO 3a0e3MeYCHHS.

AHaI3 OCTaHHIX JA0CTiIkeHb Ta myOJaikanmiid. 3a3Buuail, nepeksaj nporpam
3 OfIHiI€T MOBU MPOTrpaMyBaHHs Ha iHIIY 0a3yeThCs HA TeOpii MOOYyAOBU KOMIUIATOPIB,
aye Juis BUMNAJAKY, KOJIM W BXiJHA, 1 BUXiJJHA MOBH € MOBAMH BHUCOKOTO pPiBHS
PO3TIISATAETHCS JIUIIE KPOC-KOMITUIALIS. ICHY€E TOCUTh HEBENHMKA KUTbKICTh MMy OTiKaIlii,
NPUCBSIYEHUX MTpoOIeMi Tepekiagy MOB NporpaMmyBaHHsS. IcHyroum pimeHHs abo

Section 3. Al ICSFTI2019 151

CTOCYIOTBCSI BUPIIIaHHS JIOKAJFHUX 337a4, a00 CIHMparoThCs Ha 3acTapiiy Bepcii MOB
MPOrpaMyBaHHS, a00 € CYTO KOMEPIIiIHHUMHU MPOEKTaMH, Ji¢ Ha OE3KOIITOBHIN OCHOBI
MIPONOHYIOTHCS JIUIIE JEMOBEPCii.

BunijieHHst HeJOCJHiIKeHMX 4YACTHH 3arajibHoi mnpodjemu. VY crarTi
NPONOHYETHCSA aHaJi3 3aCTOCYBaHHS HOBOTO MIIXOAY UIA HEPeKIaay MK MOBaMU
pOrpaMyBaHHSI BUCOKOTO DPiBHS. BiH IpyHTY€ThCS Ha BHKOPHCTAHHI HOIMEPETHBOTO
aHaTi3y TEKCTY BXiJHOI MOBH, a TAaKOX BUKOPHWCTAHHI 30BHIIMIHIX JAHUX I HAJaHHS
iHpopMarlii, 1010 MOB IPOTpaMyBaHHSI.

IMocTaHoBKa 3aBJaHHs. 3aBIaHHSIM € CTBOPUTH MPOTPAMHHUN TOJATOK, IO
HaJ[a€ MOXJIMBICTh NIEPEKIIaly BXiIHOTO TEKCTY, HAITUCAHOTO HA OJHIET MOB1 BUCOKOTO
PIBHS, TaKOX Ha 1HILY MOBY BUCOKOTrO piBHsA. IIpu mpoMmy mporpama mae npoBOJAWUTH
MoTepeHid aHaji3 BXIIHOTO TEKCTy, a IH(QOpMamiro MI0J0 CTPYKTypH MOB
MpOrpaMyBaHHs OpaTH 3 30BHINIHIX (aiiiB.

BukiianeHHss 0CHOBHOro Mmarepiajy. MeToJ1 pillieHHsI MOKHA PO3MOALIIUTH Ha
nBa eranu. Ha mepmomy erami Oyae TPOBOAWTHCS 3alHC CHHTAKCHCY MOBU
MpOrpaMyBaHHS, OCKUIBKH BiJl TOTO, B SKOMY BHIJIsIAI OyJe 3amMCaHuil CHHTAKCHC,
3aJeXUTh poboTa mepeknagadya. Ha pgpyromy erami HOpOBOIUTBCS PO3poOKa
TPAHCIATOPY.

BucHoBku. B po0oTi mokazaHwii MiAXig A0 BHPINICHHA 33/Ja4i CTBOPEHHS
nepekyiajaya MOB TNPOTPaMyBaHHS BHCOKOTO piBHA. Lle mocsraeTpcs 3a paxyHOK
BUKOPHCTAaHHS TOBHOIIIHHOI MOJENi TPAHCIATOPA, IIO BKJIIOYAaE B ce0E CHUCTEMY
BUSBIICHHS TIOMIJIOK, a TaKOXX BHKOPHUCTAHHSM OIIMCIB CHHTAKCHCYy MOB Ta
ONTUMI3aTOPY KOAY, WLIO JIO3BOJIIE CTBOPIOBATH KOPEKTHI CIIBBIAHOUIEHHS MIX
NOIOHUMU CTPYKTYpamMH MOB BUCOKOTO PiBHSI.

Kiro4oBi ci10Ba: MoBa mporpaMmyBaHHs, IIEpeKIagad.

