
220 ICSFTI2019 Section 4. GN

UDC 004.451.44

Demchyk Valerii, Tyzun Vіtalіi,
Rusanova Olga, Korochkin Aleksandr

THE ORGANIZATION OF PARALLEL COMPUTATIONS IN

HETEROGENEOUS COMPUTING SYSTEMS

Демчик Валерій, Тизунь Віталій,
Русанова Ольга, Корочкін Олександр

ОРГАНІЗАЦІЯ ПАРАЛЕЛЬНИХ ОБЧИСЛЕНЬ

В ГЕТЕРОГЕННИХ КОМП’ЮТЕРНИХ СИСТЕМАХ

The article deals with the method of computing in heterogeneous multicore

CPU+GPU systems. The results of an investigation of the effectiveness of methods for
the task of text recognition using the technology of neural networks.

Key words: CPU, GPU, core, thread, parallelism, granularity, fork-join.
Fig.: 4. Bibl.: 13.

В статті розглядається спосіб організації обчислень в багатоядерних

гетерогенних CPU+GPU системах. Наводяться результати дослідження
ефективності методики для задач розпізнавання тексту з використанням
технологій нейронних мереж.

Ключові слова: CPU, GPU, ядро, потік, паралелізм, зернистість, fork-join.
Рис.: 4. Бібл.: 13.

Relevance of research topic. Heterogeneous computer systems (HCS) are

computer systems that contain several heterogeneous computing elements. HCS with
CPU / GPU architecture it’s a type of HCS systems equipped with a graphic processor.
In a simplified format, the GPU model can be described as a set of a large number of
simple processing elements of the same type. Each of these elements is much cheaper
than its CPU analog. This contributed to the significant development of the GPU in
terms of increasing the number of cores in it, and at present, the average number of
cores in the GPU reaches a half a thousand. However, as practice has shown, if a
heterogeneous computer system, which includes both the CPU and the GPU, is not
busy working with complex graphics, then the computing power, that is presented in
the current GPU, is superfluous, calculations are conducted so fast that most of the
time the GPU cores idle in waiting for the next task.

Using this powerful and cheap computing power is a clear and logical solution
of the problem of increasing computing productivity. With the integration into the

Section 4. GN ICSFTI2019 221

GPU of programmable shader blocks, it became possible to program normal user
computing on this device. This technique was called GPGPU (General-purpose
Computing on Graphics Processing Units) and became an important breakthrough in
the development of modern computer technology. The first Nvidia graphics processors
that support CUDA technology (Compute Unified Device Architecture - the
implementation of GPGPU technology from this company) were not cheap and
affordable. However, other GPGPU implementations appeared quite quickly,
including the OpenCL framework, which allows you to program for all types of GPU,
not only for Nvidia, but, for example, AMD. Also, apart from the fact, that OpenCL
supports more GPUs than CUDA, these GPUs are usually cheaper and simpler, this
technology is usable even with regular graphic cards.

Formulation of the problem. When programming for the CPU+GPU HCS, the
most important part is to understand in which cases it is advisable to connect the GPU
calculations, and in which cases better performance can be gained only by the use of
the CPU. It's important to understand, when the increase in GPU performance reduces
delays due to the data transfers between it and the CPU. Also, since both components
of such a heterogeneous system are capable of computing, a possible option for
concurrent computing that a CPU may not wait all the GPU computing time, but
process some of the calculations on its own computing power. Therefore, it is
important to find a balance, an optimal division of the input data between tasks, which
will provide minimizing of the idle time during heterogeneous computing.

Analysis of recent research and publications. In recent years, more and more
scientific articles and diploma papers about a calculation using graphic processors
have appeared [4-12]. However, an overwhelming majority of them consider this
question only from the point of view of choosing the better device for calculations
between CPU and GPU. And there is not so much works about using both of devices
for calculations at the same time. Moreover, in most of them the problem is considered
in the context of solving classical problems of linear algebra, cryptography, and
implementations of hyperparallel test algorithms [5-8]. Features of the deployment of
high-speed neural networks are considered [9] only on the examples of some typical
problems for neural networks, among which there is no one example of the most
popular tasks - recognition and classification of images. The solution to this problem
within a heterogeneous computer system is presented in one work [10], but only for
mobile systems, which are obviously less developed and productive, than classical
stationary systems.

The question of finding an optimal distribution of computational load between
the CPU and the GPU was also considered only in the context of solving typical
mathematical problems and implementation of test parallel algorithms [11].

Identification of unexplored parts of the general problem. Research of the
efficiency of parallel computing in heterogeneous computer systems is usually carried

222 ICSFTI2019 Section 4. GN

out on the classical problems for such studies - vector-matrix operations and
implementations of various test parallel algorithms [5-8]. However, the main area in
which today such systems are actually used are systems of artificial intelligence and
neural networks. This is explained by the fact that by itself the neural network involves
the simultaneous execution of a large number of elementary tasks, its structure is
similar to the structure of the GPU. It is necessary to show the described problem on
one of the classical tasks of this sphere.

It is also important to consider, that the heterogeneity of the system, and,
accordingly, the need for the exchange of data between its components can lead to a
situation, where the time, spent on the preparation and transmission of data and the
collection of results, can slow down the acceleration of distributed computing.
Therefore, it is necessary to consider in more detail the search for an optimal
distribution of the data between the components of the system in order to provide a
minimal idle time of one computing processor relatively to the other.

Also, in this work an own method for increasing the efficiency of parallel
computing in heterogeneous computer systems is proposed, which is based on the
application of combined parallelism [1] [2].

Problem statement. The task is to develop a program for recognizing text on
images based on a neural network and focused on parallel work in a heterogeneous
computer system. The program has to implement combined parallelism, as well as the
ability to divide the percentage of processing data between the CPU and the GPU. The
input data for a task is an image with letters, numbers, characters in the PNG format,
as well as the percentage of GPU loading. Output data is the text string and the time it
took to receive result.

Developed program has to be tested in various heterogeneous computer systems
and show conclusions about the effectiveness of the proposed approach.

Combined parallelism. The simplified version of the CPU / GPU interaction
scheme looks like this: from the CPU through the interface (for the external GPU it is
PCI - Peripheral component interconnect) a set of instructions that must be performed
on each core of the GPU is sent; Through the GPU controller, each core is configured
for these instructions; The CPU then sends a set of data with which the GPU has to
work; The GPU controller distributes this data between available cores, and after
completing computing, it collects the results and sends it to the CPU. The instruction
sets for relatively simple GPUs are small in size (several rows of program code) and
simple in their structure (usually elementary mathematical and logical operations). We
can say that the cores of the graphics processor itself implements the fine-grained
parallelism calculations. However, with the advent of PCI interfaces of 2.1 version and
above in heterogeneous computer systems, the possibility of parallel data transfer
between CPU and GPU has appeared, which allows you to organize combined
parallelism in the system.

Section 4. GN ICSFTI2019 223

This approach is based on the simultaneous use in the program of two types of
parallelism: medium-grained and fine-grained. At the same time, the parallel program
includes a set of traditional threads along the number of cores of the CPU (parallelism
of medium-grain size). Each of these threads implements fine-grained parallelism by
creating sub-threads using appropriate Fork-Join tools [7]. These small threads are
used only for calculations. Additionally, as noted above, each of the medium-grain
threads can interact with the GPU without delay, sending the necessary data to the
graphics processor and taking the results of its work. In the GPU, the calculations are
transferred to a large number of small threads, each on a separate core.

Previous studies [1] [2] proved the effectiveness of combined parallelism in the
organization of overloaded parallel computing.

Analysis of the means of implementation. The main part of the program is
written using the C# language. This multiparadigm language allows you to write
program code for necessary task quickly and conveniently. In addition, in previous
studies [1] [2], the means of C# language demonstrated their high efficiency in the
implementation of all types of parallelism, including the combined one.

Calculations on the graphics processor are organized by the OpenCL
framework, because it integrates seamlessly with the C# language and supports a large
lineup of conventional GPUs. In addition, existing research shows its high
performance, at the level of Nvidia CUDA [12].

Test results. Testing of programs was carried out on two different
heterogeneous computer systems, which had the following parameters:

1. CPU: Intel i5-7200u, 2 cores, 4 threads, maximum frequency 3.1 GHz. GPU:
AMD Radeon R5 M420, 1030 MHz, 320 processors, 2 GB of memory;

2. CPU: Intel Core i7-7700HQ, 4 cores, 8 threads, maximum frequency 3.8 GHz.
GPU: NVIDIA GeForce GTX 1050 Ti, 1030 MHz, 768 processors, 4 GB of memory;

Software: Windows 10, .NET Framework 4.7, OpenCL 2.2.
Graphs below showing the dependence of the program's running time on the

number of threads involved in it, as well as the data distribution between the CPU and
the GPU. The graphs are presented separately for the situation, when the program
processed a large amount of data (text recognition of 1000 characters), and for the
situation, where the program worked with a small amount of data (200-character text
recognition). Graphics are shown for both systems (1-2) in which the testing was
conducted.

The following two graphs show the dependence of the program's performance
on the amount of text that is submitted for recognition for cases where all data
processing is carried out only on one of the elements of the system. The point of
intersection on these graphs shows the turning point of the dependence. That is, if you
submit text that is larger than this volume, then the efficiency of the use of recognition
calculations on the CPU is reduced, and the efficiency of the use of the graphics
processor is increased.

224 ICSFTI2019 Section 4. GN

Fig. 1. Graphic of calculation speed depending on data distribution.
200-character text (left) and 1000 characters (right). System 1

Fig. 2. Graphic of calculation speed depending on data distribution.
200-character text (left) and 1000 characters (right). System 2

Fig. 3. Graph of the calculation time dependence of the program on the volume of text when

recognizing on individual elements. Systems 1 (left) and 2 (right)

0
1000
2000
3000
4000
5000
6000
7000

Ti
m

e,
 m

s

Balance (%CPU / %GPU)
1 thread 2 threads 4 threads

0
5000

10000
15000
20000
25000
30000
35000
40000

10
0/

0

90
/1

0

80
/2

0

70
/3

0

60
/4

0

50
/5

0

40
/6

0

30
/7

0

20
/8

0

10
/9

0

0/
10

0

Ti
m

e,
 m

s

Balance (%CPU / %GPU)
1 thread 2 threads

0

1000

2000

3000

4000

5000

6000

10
0/

0

90
/1

0

80
/2

0

70
/3

0

60
/4

0

50
/5

0

40
/6

0

30
/7

0

20
/8

0

10
/9

0

0/
10

0

Ti
m

e,
 m

s

Balance (%CPU / %GPU)
1 thread 2 threads
4 threads 8 threads

0

5000

10000

15000

20000

25000

30000

10
0/

0

90
/1

0

80
/2

0

70
/3

0

60
/4

0

50
/5

0

40
/6

0

30
/7

0

20
/8

0

10
/9

0

0/
10

0

Ti
m

e,
 m

s

Balance (%CPU / %GPU)
1 thread 2 threads
4 threads 8 threads

0
2000
4000
6000
8000

10000
12000
14000

20 100 200 400 500 600 700 1000

Ti
m

e.
 m

s

The volume of text, characters

CPU GPU

0

2000

4000

6000

8000

20 100 200 400 500 600 700 1000

Ti
m

e,
 m

s

The volume of text, characters

CPU GPU

Section 4. GN ICSFTI2019 225

The following two graphs show the dependence of the program's performance
on the amount of text that is submitted for recognition. The data in this case is
distributed as follows: 40% for the CPU and 60 % for the GPU, since, as seen from the
previous graphs, this kind of distribution achieves maximum program performance in
all cases.

Fig. 4. Graph of calculation time according to the volume of text and number of threads.
Balance point is 40/60. Systems 1 (left) and 2 (right)

Conclusions. The results of the test showed the effectiveness of heterogeneous

computing systems in implementing the solution of the problem by means of C# and
OpenCL. Applying the calculations to the graphics processor, along with the
calculations at the CPU, allowed to significantly reduce the program execution time. In
the process of research, in practice, the hypothesis of the existence of some of the most
effective balance of data split between the CPU and the GPU has been confirmed.

Regarding the direct speed of the program work, the turning point can be
considered as a text recognition of 600 characters. From the results it is clear that in
the process of recognizing the text of less than 600 characters, the loss of time due to
the exchange of data with the GPU is quite critical. It is because of sending a large
percentage of data to the GPU nullifies the entire increase in performance from its use.
It is desirable to send relatively a small amount of data to the graphics processor, so
that it is accepted before the completion of computing on the central processor. In the
case of text recognition over 600-700 characters, the situation is diametrically
opposed. In this case, it is advisable to use the central processor only the role of
administration and a small amount of computations, and the main part of data should
be send to the graphics processor.

For all target systems considered, regardless of the amount of data processed by
the program, the balance of 60/40 was the most optimal, that is, if the program

0
5000

10000
15000
20000
25000

0 500 1000

Ti
m

e,
 m

s

The volume of text, characters

1 thread 2 threads
4 threads

0

5000

10000

15000

0 500 1000

Ti
m

e,
 m

s

The volume of text, characters

1 thread 2 threads
4 threads 8 threads

226 ICSFTI2019 Section 4. GN

organizes the distribution of data, so that 60% of it is sent to the GPU, and the
remaining 40% was left to process on the CPU, then it will provide the minimal idle,
which allows you to get the most possible performance. Further offset of the balance
in the direction of the GPU (for processing more than 600 characters) or CPU (for
processing less than 600 characters) led to insignificant increases of performance,
compared with the previous increases.

Additionally, it should be noted that the optimal balance obtained for the
pattern recognition and classification problem is somewhat different from the optimal
balance for linear algebra problems [11] in the direction of more GPU calculations.

The use of combined parallelism has also reduced the calculation time. With
each subsequent added thread, you can observe a proportional decrease in the
program's running time. It is also shows that the balance of calculations on the central
and graphics processor remained unchanged with each subsequent added flow, since,
on the one hand, the computing speed increased on the CPU, and on the other hand,
the number of threads of interaction with the GPU increased, which turned into
reduced the idle of GPU cores and idle due to data transfer between the CPU and the
GPU.

So, in all cases, the most effective is the maximum possible use of cores and
threads on the central processor, no matter how much we use the parallel calculations
ob graphics processor.

Based on the foregoing, it can be admitted that the best approach to implement
a text recognition system is to conduct preliminary testing on a target heterogeneous
computer system, which will take extra time, but will ensure that the most effective
proportion of the data distribution on this system is found.

References

1. Демчик В. В. Дослідження ефективності дрібнозернистого
паралелізму в багатоядерних комп'ютерних системах / В. В. Демчик, О. В. Ко-
рочкін, О. В. Русанова // Вісник НТУУ «КПІ». Інформатика, управління та
обчислювальна техніка : зб. наук. праць. – К. : Век+, 2018. – № 66. – С. 56 – 61.

2. Демчик В. В. Застосування дрібнозернистого паралелізму для
підвищення ефективності паралельних та розподілених обчислень / В. В.
Демчик, О. В. Корочкін // Безпека. Відмовостійкість. Інтелект. Збірник праць
міжнародної науково-практичної конференції ICSFTI2018. Київ, Україна, 10-12
травня 2018 р. / КПІ ім. Ігоря Сікорського –К. : КПІ ім. Ігоря Сікорського, Вид–
во «Політехніка», 2018. – С. 362 – 368.

3. Жуков І.А., Корочкін О.В. Паралельні та розподілені обчислення:
Навч. посібник [Текст]. – К.: Корнійчук, 2005. – 226 с. – ISBN 996-7599-36-1.

Section 4. GN ICSFTI2019 227

4. Hyesoon Kim, Richard Vuduc, Sara Baghsorkhi. Performance Analysis and
Tuning for General Purpose Graphics Processing Units (GPGPU). — Morgan &
Claypool Publishers, 2012. — 96 p.

5. Lin Cheng. Intelligent scheduling for simultaneous CPU-GPU applications
by thesis // Graduate College of the University of Illinois at Urbana-Champaign, 2017
Urbana, Illinois [Електронний ресурс]. Режим доступу: http://rsim.cs.uiuc.
edu/Pubs/Lin_thesis.pdf

6. Victor W Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun
Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas
Chennupaty, Per Hammarlund, Ronak Singhal and Pradeep Dubey. Debunking the
100X GPU vs. CPU Myth: An Evaluation of Throughput Computing on CPU and
GPU // Throughput Computing Lab, Intel Corporation Intel Architecture Group, Intel
Corporation [Електронний ресурс]. Режим доступу: https://www.academia.edu/
36236172/Debunking_the_100X_GPU_vs._CPU_Myth_An_Evaluation_of_Throughp
ut_Computing_on_CPU_and_GPU

7. T. Brandes, A. Arnold, T. Soddemann, D. Reith. CPU vs. GPU -
Performance comparison for the Gram-Schmidt algorithm // Eur. Phys. J. Special
Topics 210 – К.: EDP Sciences, Springer-Verlag, 2012. – № 210. – С. 73–88.

8. Haneesha H. K., Chandrashekhar B. N., Lakshmi H., Sunil. Performance
Evaluation of CPU-GPU with CUDA Architecture Hybrid Computing, R&D // Nitte
Meenakshi Institute of Technology, Bangalore-64.

9. Amr M. Kayid, Yasmeen Khaled, Mohamed Elmahdy. Performance of
CPUs/GPUs for Deep Learning workloads // The German University in Cairo
[Електронний ресурс]. Режим доступу: https://www.researchgate.net/publication/
325023664_Performance_of_CPUsGPUs_for_Deep_Learning_workloads

10. Sipi Seppälä. Performance of Neural Network Image Classifcation on
Mobile CPU and GPU // Aalto University MASTER’S THESIS 2018 [Електронний
ресурс]. Режим доступу: https://pdfs.semanticscholar.org/946d/3f843ea93f22cc9c7e
30af42a682139ad1e6.pdf

11. Ana Lucia Varbanescu. Heterogeneous CPU+GPU computing // University
of Amsterdam. [Електронний ресурс]. Режим доступу: http://www.es.ele.
tue.nl/~heco/courses/ASCI-schools/ASCI_springschool_2017/ASCI_HetCompCPU-
GPU_part1.pdf

12. Kamran Karimi, Neil G. Dickson, Firas Hamze. A Performance
Comparison of CUDA and OpenCL. - D-Wave Systems Inc. [Електронний ресурс].
Режим доступу: https://arxiv.org/ftp/arxiv/papers/1005/1005.2581.pdf

13. Lea, Doug. A Java Fork/Join Framework, In Proceedings of ACM Java
Grande 2000 Conference (San Francisco, California, June 3-5, 2000)

228 ICSFTI2019 Section 4. GN

Authors

Demchyk Valerii – student, Department of Computer Engineering, National

Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.
E-mail: kirintor830@gmail.com
Демчик Валерій Валентинович – студент, кафедра обчислювальної

техніки, Національний технічний університет України «Київський політехнічний
інститут імені Ігоря Сікорського».

Tyzun Vіtalіi – student, Department of Computer Engineering, National

Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.
E-mail: vitaliy.tyzun@gmail.com
Тизунь Віталій Юрійович – студент, кафедра обчислювальної техніки,

Національний технічний університет України «Київський політехнічний
інститут імені Ігоря Сікорського».

Rusanova Olga – docent, candidate of Technical Sciences, Department of

Computer Engineering, National Technical University of Ukraine “Igor Sikorsky Kyiv
Polytechnic Institute”.

E-mail: olga.rusanova.v@gmail.com
Русанова Ольга Веніамінівна – доцент, кандидат технічних наук,

кафедра обчислювальної техніки, Національний технічний університет України
«Київський політехнічний інститут імені Ігоря Сікорського».

Korochkin Aleksandr – docent, candidate of Technical Sciences, Department

of Computer Engineering, National Technical University of Ukraine “Igor Sikorsky
Kyiv Polytechnic Institute”.

E-mail: avcora@gmail.com
Корочкін Олександр Володимирович – доцент, кандидат технічних

наук, кафедра обчислювальної техніки, Національний технічний університет
України «Київський політехнічний інститут імені Ігоря Сікорського».

Section 4. GN ICSFTI2019 229

EXTENDED ABSTRACT

Demchyk Valerii, Tyzun Vіtalіi,
Rusanova Olga, Korochkin Aleksandr

THE ORGANIZATION OF PARALLEL COMPUTATIONS IN

HETEROGENEOUS COMPUTING SYSTEMS

Relevance of the research. The method of computing in multi-core

heterogeneous CPU+GPU systems using the technology of «combined parallelism» is
considered. The results of research on the effectiveness of the method for text
recognition task using the technology of neural networks are presented.

Target setting. The heterogeneity of the computational elements of a
heterogeneous computer system leads to the problem of a long idle time, when one
element of the system is waiting another to complete its task, which leads to total delay
in the entire system.

Actual scientific researches and issues analysis. Over the past few years,
there are more articles on this topic, but they simply choose between a CPU or a GPU,
and only classical problems of linear algebra and hyperparallel test algorithms are
considered.

Uninvestigated parts of general matters defining. The lack of research on the
optimal distribution of computations between different elements of the system. Lack of
research on solving real problems, such as text recognition with neural network
technologies.

The research objective. The objective is to develop a program for text
recognition based on a neural network and focused on parallel work in a
heterogeneous computer system. The program has to implement combined parallelism,
as well as the ability to adjust the percentage of processing on the CPU and GPU. It is
necessary to test the developed program in various heterogeneous computer systems.

The statement of basic materials. A description of the main ideas and
approaches that were implemented during the research. The extensive testing of the
developed program in several different real heterogeneous computer systems has been
carried out.

Conclusions. The proposed method for organizing calculations in
heterogeneous computer systems has shown its effectiveness. Also, the hypothesis of
the existence of an effective load distribution for the considered task between the
elements of the target system was confirmed: 40% on the CPU and 60% on the GPU.

Key words: CPU, GPU, core, thread, parallelism, granularity, fork-join.

