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Urgency of the research. In modern world the distributed computing is an 

important branch of the development of computer technology. Improving of their fault-

tolerance is a one of most important tasks. One of perspective methods of its solution is 

a method of fault-tolerant topologies synthesis. But the use of fault-tolerant topologies is 

complicated by the fact that the topology proposed in the framework of graph theory and 

the current possibilities for its implementation differ significantly. This leads to the fact 

that the fault tolerance of the system may be less than the fault tolerance of the topology 

per se. Therefore, it is important not only to review and synthesize topologies per se, but 

also to consider the possibilities of using their properties to design computing systems 

and networks. Thus, the topic of this article is urgent.  

Target setting. Quite often, topology offers good properties that cannot be used 

into practice. Conversely, reviewing only the topology of the system without 

considering its possible implementation does not allow to take full advantage of all 

possibilities for ensuring fault tolerance. Therefore, this article proposes to consider an 

excess de Brujin topology (called as quasi-quantum) using a complicated model that 

includes a switch network and computational nodes as separate entities, and consider 

how a high fault-tolerance can be ensured for such a system.  

Actual scientific researches and issues analysis. Well known at the moment are 

switched and hybrid networks. There are also many methods of fault tolerance ensuring. 

Quasi-quantum topology, its capabilities for simple routing and fault tolerance compared 

to its closest counterparts have already been explored. Previous publications have 

proposed clustering of nodes with the same numbers for this topology.  

Uninvestigated parts of general matters defining. So far, quasi-quantum 

topology has been considered only in terms of graph theory as a point-to-point 

network. An overview of the capabilities of switched network has not been completed. 
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Not taking into account the fact that most modern processors have autonomous 

controllers to access the communication environment. It is proposed to use quasi-

quantum routing to bypassing failures. However, the possibility of actual 

implementation of this idea is not considered given the above features.  

The research objective. The purpose of the article is to consider and analyze 

options for implementing a multicomputer system with quasi-quantum topology and a 

network of switches as a communication medium. 

The statement of basic materials. Multicomputer and cluster systems use 

communication network (CN) with a certain topology to communicate between 

processors. Working with a communication network isn‘t simple. There are a lot of 

additional routing-related actions are required to send the message. Therefore, it is 

quite common to use additional equipment to work with the communication network: 

controllers, switches, routers, etc. This approach allows you to route messages in 

parallel with calculations. This improves system performance. Therefore, this 

approach is quite common. Therefore, when considering systems, it is advisable not 

only to consider abstract nodes and topologies, but also consider the presence of 

additional equipment.  

In Fig. 1 shows a model of a multicomputer system with a linear topology as an 

example of model.  
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Fig. 1. Multicomputer system with linear topology in the proposed model 

Use of the proposed model for quasi-quantum topology. Quasi-quantum 

topology is based on the De Brujin graph using code transformations - left and right 

shifts - to form a network. However, unlike the De Brujin graph, the quasi-quantum 

topology uses excess code 0/1 / -1 to encode node numbers. It leads to redundancy. A 

topology may contain multiple nodes with different code, but the same number. This, 

in turn, can be used for fault-tolerant routing. Also, this topology has good topological 

characteristics: constant degree 6 and diameter growing as log3N, where N is the 

number of nodes. n Fig. 2 shows a normal representation of this topology according to 

graph theory.  

However, as stated above, this presentation does not quite match the current 

technical capabilities and therefore the forecasts made on such a model may be 

inaccurate. Therefore, the following model is proposed: the system contains computing 

nodes (processors) and switches. Computing nodes have decimal numbers (visible 
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from the outside), switches - a unique code in the excess numeric system. Each 

computing node is connected to a switch whose code represents the node number. 

Switches are connected by the ―excess de Brujin‖ (quasi-quantum) topology. Fig. 3 

illustrates this model of a computing system. Gray squares indicate computing nodes, 

white circles are switches. 
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Fig. 2. Quasi-quantum topology, rank 2 
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Fig. 3. Model of a system with a quasi-quantum topology of rank 2. 

As can be seen from Fig. 3, for rank topology 2 there are 2 nodes with non-

unique number: 1 and -1. Because the numbers of the compute nodes are visible from 

the outside, such representation is undesirable and may lead to conflict. 

Virtualization of conflicting computing nodes. Because ID conflict is 

undesirable for external representation, the following solution is proposed: make 

conflicting processors virtual. Each virtual processor (virtual node, VN) has a unique 

number, but several physical processors are hidden within it.  The system "knows" 

which processor is involved for what task and therefore can perform the messages 

transfer correctly, however, only virtual processors are visible to the user and to the 

routing. Fig. 4 shows a model of the system with virtual nodes 1 and -1.  
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Fig. 4. Model of the system with virtual redundant nodes 

There are also several principles for virtual node systems that aim to provide 

high fault-tolerance:  

1. A virtual processor may contain multiple physical processors 

2. Any message assigned to a virtual node can be delivered to any component 

of it from any connected router (principle of universality).  

3. In the event of failure of any component of the virtual node, its role can 

assume any other component of this VN (the principle of replacement) 

4. Any message passing through a router connected to a virtual node can be 

transmitted to any other router connected to this node ("Quantum transition" or 

"quantum tunnel") 

5. Additional processors can be added inside the virtual node, which can be 

used for backup or to increase system performance (internal scaling). 

Options for implementing the described principles. Although node 

virtualization avoids some problems, it does create new ones. First of all, it is necessary 

to deal with the structure of virtual nodes. Several implementations are offered. 

Simple implementation involves direct links between physical processors and 

switches. This structure is the simplest and cheapest, but has a lot of disadvantages. 

Fig. 5 shows a simple implementation. Blue dashed line indicates additional 

connections between computing nodes and switches. These links allow you to connect 

a physical node to an alternate switch as needed.  The red dotted line indicates 

additional direct connections between nodes inside the virtual node. Such connections 

allow data to be transmitted directly between nodes with the same number without 

having to access the communication network. This allows you to speed up 

transmission inside the virtual node, unload your communications network and 
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increase fault-tolerance. The black dotted line outlines virtual processors. The IDs of 

physical processors inside the virtual ones are indicated in parentheses.  
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Fig. 5. Simple implementation of virtual nodes 

It is worth considering how this model enables the implementation of such 

principles as the quantum tunnel principle and the principle of internal scaling. In Fig. 

6 shows an example of transmitting a message from node -3 to node 2. Due to the 

large number of link failures, the switches TT and 0T were isolated. This causes the 

topology to lose connectivity. However, since the code of node 0T represents the 

number -1, and this number has several representations in the excess code, a "quantum 

tunnel" can be used to bypass the fault. In a simple implementation, one of the 

processors from the virtual node -1 must be used for this purpose. The green arrow 

indicates the path to which the message is transmitted: from the source (processor -3) 

to the corresponding switch, from TT to OT, then through the "quantum tunnel" 

through processor -1 (0) to switch T1, whose code also represents the number -1, from 

there to 10, and from it to the associated destination processor 2.   

In Fig. 7 shows, how internal scaling can be performed. Additional physical 

processors are highlighted in green and have a lighter fill. The links between processors 

and switches are highlighted in blue. The virtual links of the virtual node is red. 

After analyzing the two examples above, you can immediately identify key 

disadvantages of a simple model. This is a rapid increase in degree of switches on 

internal scaling, the using of processors to perform the quantum transition. In addition, 

with the increase in the number of components complicates the transmission of 

messages inside the virtual node. Either you need to implement a fully connected system 

or use processors for routing, which eliminates all the benefits of such a decision.  
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Fig. 6. The principle of "quantum tunnel"  

working in simple implementation 
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Fig. 7. Internal scaling in a simple model. 

Another implementation offers the opposite approach. The message is 

transmitted through an intermediate access device to the communication network, - 

Virtual Node Switch (VNS). VNS does not perform routing by itself, only transmits to 

or receives messages from the network. As result, its fault probability is less. In Fig. 8 

illustrates this model. 

This implementation solves a number of problems. VNS is one for the entire 

virtual node, regardless of the number of hidden processors. As result, the degree of 

switches on the network is not growing. In addition, there is no need to use processors 

for "quantum tunnel". It can be performed by VNS. But such a system has a very 

significant disadvantage. VNS is a single point of failure. VNS failure causes a 

complete node failure. This is not acceptable in terms of fault tolerance. However, 

there is a solution: additional VNS. Using one or more backup VNS eliminates single 

point of failure issues while providing the same advantages. In Fig. 9 shows an 

advanced switched implementation. It also shows internal scaling. The markings are 
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the same, except that the internal links are replaced by the IN (Inner Network) pseudo-

switch for simplify of presentation.  
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Fig. 8. Implementation using VNS  

(switched implementation). Basic version 
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Fig. 9. Realization with VNS. Advanced. 

The third implementation combines the two previous ones. This implementation 

proposes the following connection scheme: each processor is directly connected to one 

and only one switch in the topology directly. At the same time, the node also has a 

VNS (1 or more) that provides access to any switch connected to this virtual node. 

Such an implementation is a trade-off: simpler than switching and at the same time 

avoids the disadvantages of simple implementation. In Fig. 10 presents a hybrid 

implementation.  

After analyzing the proposed models, you can compare them with each other. 

For this purpose, it is suggested to evaluate the influence of a particular virtual node 
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architecture on various parameters. Let the topology have a virtual node with N 

"hidden" nodes. This node is connected to the K topology switches. At the node is M 

VNS (for simple architecture M = 0  
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Fig. 10. Hybrid implementation. 

Table 1 

Implementations comparison 

# 

Parameter 

Realization of virtual node 

 Simple 
Switched, 

base 

Switched, 

adv. 
Hybrid 

1 

Count of immediate links 

between procs. and switches 

(L) 

NK 0 0 N 

2 Minimal VNS count (Mmin) 0 1 2 1 

3 
Count of links between 

 procs. and VNSs 
0 N NM NM 

4 
Count of links between VNS 

and topological switches 
0 K KM KM 

5 Maximal degree of one VNS 0 N+K N+K N+K 

6 
Degree of connected 

topological switch grows as… 
N 1 M M + 1 

7 
Routing is independent from 

processing. 
No Yes Yes Yes 

8 

Minimal delay of access  

to CN (delay of link =x,  

delay of VNS = y, x<y) 

x y y x 

9 
Minimal cost (cost of link=x, 

cost of VNS=y, M=Mmin, x<y). 
NKx (N+K)x+y 2(N+K)x+2y (2N+K)x+y 

10 
Fault tolerance  

of VN-CN connection 
NK 1 MK MK+N 

As can be seen, the simple implementation has the highest fault-tolerance (since 

N> = M). But it leads to the highest growth in the degree of topology switches. 

Switching implementation in the base version has the least fault tolerance (since it has 
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a single failure point). On average, the most balanced is the hybrid implementation.  

Processor-level fault-tolerance. Since there are 2 types of nodes (processors 

and switches) in the model described, it is worth considering the fault tolerance 

separately for each type.  

As discussed above, the mechanism of virtual computing node (virtual 

processor, virtual node, VN) allows to solve the problem of fault tolerance for those 

processors whose numbers have several code representations. It was postulated that 

when one processor of VN fails, another processor should take over its role and thus 

restore the virtual node's work This was called the replacement principle (replacement 

mechanism). It is suggested to consider this mechanism in more detail. The essence of 

the replacement mechanism is this: let there be a failure. One of the processors does 

not work.  The task of the system is to do the following:  

1. Its role and computational task may be assumed by another processor 

2. At the user and routing levels, the structure of the system remained 

unchanged. 

Allowed performance loss due to failure, but no communication network or the 

user does not have to "see" the processor‘s fault. In Fig. 11 shows an example of how 

such a replacement is performed (in simple implementation). Node -1 contains several 

processors. In regular mode processor -1(0) works with switch Т1, processor -1(1) – 

with switch 0Т. Processor -1 (0) fails. But, due to the fact that node -1 has 2 

processors, processor -1 (1) can take its role. In decrease performance of virtual node -

1 (since it will no longer be possible to use -1 (0) and -1 (1) processors in parallel), but 

nothing will change for the routing. Messages received on 0T and T1 routers will be 

delivered. For the user, similarly, the model remains the same: processor -1 works.  
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Fig. 11. Example of replacement in virtual node -1 

However, there is a disadvantage: it seems that this replacement only works for 

node 1 and -1. If, for example, node-3 fails, it will change the model of the user. It is 
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suggested to make all nodes virtual to solve the problem. This will allow the 

implementation of the replacement principle even for those nodes that do not have 

multiple code representations. In Fig. 11 shows a new model of the system as seen by 

the user.   
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Fig. 11. User model with full virtualization 

However, the problem is: where to get the processors for replacement? Of 

course, you can add additional processors to the virtual nodes. But this greatly 

increases the cost of the system. Therefore, a different approach is needed. A shared 

processor mechanism is proposed as such an approach. The basic idea is: let the same 

processor belong to multiple virtual nodes. Then, when all the processors of one 

virtual node fail, the other node will be able to "give away" one processor in order to 

restore the structure of the system. If the virtual node has only one working processor, 

it can go into "shared" mode. In this mode, physically the same processor is used for 

several different tasks and is perceived by the system as several different processors of 

lower performance. This will reduce the performance of both virtual processors, but in 

the critical case will restore the system model and take time to fix the failure. In Fig. 

12 shows an example of replacement by this mechanism. In example processor -1 (1) 

uses as shared by VN‘s -1 and -3. While once «own» processor of VN -3 fails, node -1 

«give away» processor -1 (1), thus restores the structure of the system.  

Network-level fault tolerance. The fault-tolerant routing and redundancy 

provided by the topology allow us to bypass some failures with the help of "quantum 

tunnels". However, there is a problem: there are not many "quantum tunnels" in the 

topology.  

To resolve this issue is proposed to create additional links. This allows you to 

bypass the fault when routing does not allow it the usual way. Of course, bypassing 

using "artificial quantum tunnel" is not as simple as bypass using fault-tolerant 
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routing. However, it will gain time to fix the problem in a critical situation. The 

following links are suggested. For all topology nodes having only one code 

representation, the duplicate link is executed by inversion (for example, 2 and -2). 

Node 0 communicates with nodes 11..1 and TT..T. The topology is symmetrical with 

respect to 0, so such a linkage will allow for even distribution of additional links. With 

respect to node 0, it and node 11 and TT are especially important when using tree-

based routing. Therefore, it makes sense to connect them directly to go from one root 

to another in the event of a failure.  
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Fig. 12. An example of a shared processor mechanism 

There are several possible implementations of such connections. Figure 13 

shows the implementation of connections between VNs and topology switches.  
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Fig. 13. Additional links created between VN and switches 

This implementation is similar to conventional "quantum tunnels" in topology, 

allowing them to be used in the same mode. But there is a disanvantage: additional 

connections increase the degree of topology switches.  

Therefore, another option is offered: direct virtual processor connections. Fig. 

14 shows a model of this.  
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Fig. 14. Additional links created between VNs 

Example of system. An example is how suggestions made allow the system to 

work with many failures. A hybrid implementation of virtual nodes is chosen as an 

example. It is suggested to use the fact that nodes -1 and 1 have 2 physical processors 

per node and use them to duplicate processors 3, 2, -2 and -3. It is also worth 

duplicating processor 0 with processors 3 and -3 (it is possible to use already existing 

duplicate links). Additional links are suggested to be made between virtual nodes. Fig. 

15 shows a model of the described system.  
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Fig. 15. Example of a system 

Fig. 16 shows the failures made to the system as an example.  

The next failures are suggested for example:  

 Processors: 3, 2, -1(1), -2 

 Switches: 10, 00, ТТ, Т1 

Switch of virtual node (VNS) № 1. 
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Fig. 16. Faults in system 

This can be solved in the following way:  

1. Processor 3 is reserved by processor 1(0). VNS 3 works, so 1(0) will be 

«given away» to node 3 and communicates with switch 11 through VNS 3.  

2. Processor 2 is reserved by processor -1 (0). But processor -1 (1) fails, as 

result, -1 (0) is only working processor of node -1. Therefore the «shared usage» 

mechanism will be used: processor -1 (0) goes to multitasking mode and takes both 

roles (roles of processors 2 and -1(1)).  

3. Processor -2 is reserved by processor 1(1). Because the processor 1(0) has 

already been used to replace the node 3, there are 2 variants: 1(0) and 1(1) goes to 

shared usage mode (providing performance P for node 1, and performance 0.5 * P for 

nodes 3 and 2). Or, only one of the processors will be shared and the other is fully 

―gives away‖. Given the failure of VNS 1, the first solution is optimal.  

4. Switch 10 fails and node 2 is unreachable. But switch Т0 works. Usage of 

«artificial quantum tunnel» allows restore access to node even in this critical case. 

5. Switches 00 and ТТ fails, so their roles taken by switch 11.  

6. Switch Т1 fails, but switch 0Т works. Those switches have same number 

and both connected to node -1. So, messages to node -1 may be delivered through 

switch 0Т. 

Fig. 17 depicts what described system restore looks like. 

Analysis of proposed solution. Now proposals are shown and the fault-

tolerance-associated possibilities are highlighted on example of system. As shown in 

the model, the combination of fault-tolerant topology and additional fault-tolerance 

ensuring methods allows to keep the system operational even in the presence of many 

failures. The proposed solution allows you to do this even without the use of additional 
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nodes. But it reduces system performance. Let each physical processor have speed P 

and the system is homogeneous. Table 2 shows, how reduces computing system 

elements‘ performance due to failures (see. Fig. 17).  
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Fig. 17. Restored system 

Table 2 

Performance of each virtual node in cases with failures and without failures 

Virtual node No failures With failures in example 

-3 P P 

-2 P P/2 

-1 2P P/2 

0 P P 

1 2P P 

2 P P/2 

3 P P/2  

System‘s performance 9P 5P 

 

Thus, the described solution allows you to redistribute the performance of the 

system to restore its structure. This allows for a high level of fault tolerance.  

However, there are a number of requirements and disadvantages. First, the 

shared processor mechanism requires appropriate software support. The system should 

distribute tasks, providing multitasking. The same support is required for the routing 

algorithm. The algorithm must change the destination node if it fails. Another 

disadvantage is that the system has a fairly high degree and diameter. The third 

disadvantage is the difficulty of using such a solution for large systems. The proposed 

solution is universal for any system with a quasi-quantum topology. However, 

increasing the number of nodes will increase the complexity of fault-tolerance 

ensuring tools. The last drawback is the irregularity of additional backup connections. 
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The links shown are rigidly tied to the example and may vary. This prevents the 

system from analytically determining which node is reserving which node.  

Conclusions. The article considers the method of implementing a fault-tolerant 

system with a switched communication system based on a fault-tolerant topology in 

switch network. The basic principles that can be implemented by the system to ensure 

fault tolerance are put forward. Variants of realization of these principles are 

described. Measures to additional increase the fault tolerance of the system are 

considered. An example of how these measures allow the system to work in case of 

failure is shown. 

The advantages of the proposed solutions are high fault tolerance. Using a 

combination of hardware structure and the necessary software, the described solution 

allows you to perform the redistribution of computing resources, thereby hiding the 

failure. 

Disadvantages include unsatisfactory topological characteristics, unresolved 

scaling issues, and irregularity of additional redundancy links. 

Future publications may focus on regularization of backup links, ways to 

minimize the degree and diameter, and review the system when scaling. 
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