

UDC 004.052.3

Yaroslav Hrab,

Artem Volokyta.

IN-MEMORY DATA GRID FAULT TOLERANCE

ISSUE BASED ON THE MULTI-MASTER REPLICATION

The paper deals with the issue of fault tolerance of In-Memory Data Grid

systems. The fault tolerance mechanism is implemented using the Multi-Master

Replication approach. The general structure of the system is presented.

Key words: fault tolerance, Multi-Master Replication, In-Memory Data Grid,

transferring data on the cluster.

Fid.: 6. Tabl: 4. Bibl.: 4

Relevance of the research topic. Storing and processing data directly in RAM

has been a hotly debated topic in recent times. Many companies that in the past refused

to consider the use of in-memory technologies due to their high cost are now

rebuilding the architecture of their information systems to take advantage of the fast

transactional data processing offered by these solutions. This is due to a sharp drop in

the cost of RAM, which makes it possible to store all the entire set of operational data

in memory, increasing the processing speed by more than 1000 times compared to data

processing on hard drives. In-Memory Data Grid (IMDG) and In-Memory Compute

Grid (IMCG) products provide the necessary tools to build such solutions.

One of the key tasks in the development of IMDG system is the organization of

fault tolerance of the system. The problem of fault tolerance is due to the fact that the

data is stored directly in RAM and any technical problems with the server or power

faults can lead to data loss.

Target setting. Lack of a well-described model of the IMGD system, taking into

account the need for fault tolerance with minimal data movement within the cluster.

Comparative characteristics of existing solutions. Tables 1 - 3 show the main

characteristics of existing IMDG systems in terms of fault tolerance, data security and

performance.

Due to Tab. 1, we can see that all compared systems implement replication to

save copies of the entire data set. However, it is impossible to say exactly which of the

products is the best in terms of fault tolerance, as some of the presented solutions are

commercial, therefore it is impossible to get acquainted with the internal structure of

these systems.

Due to Tab. 2, we can see that all compared systems implement data access

control and transaction concepts. As in the case of fault tolerance comparisons, it is not

possible to say exactly in which product data security is better organized.

ICSFTI202032 Section 1. FT

Table 1

Comparative characteristics of the most popular

IMDG in terms of fault tolerance

Name GridGain
Hazelcast

IMDG

NCache

Oracle

Coherence
Redis

Replication

methods

yes

(replicated

cache)

yes

(Replicated

Map)

yes, with

selectable

consistency level

yes, with

selectable

consistency

level

yes

(Master-slave

replication;

Multi-master

replication;)

Table 2

Comparative characteristics of the most popular

IMDG in terms of data protection

Name GridGain
Hazelcast

IMDG
NCache

Oracle

Coherence
Redis

Access

control

Security

Hooks

Role-based

access control

Active

Directory/

LDAP

Authentication

 to access the

cache via

certificates

or http basic

authentication

Simple

password-based

access control

Transactio

n concepts
ACID

one or two-

phase-commit;

repeatable reads;

read committed;

optimistic

locking and

pessimistic

locking

configurable

Optimistic

locking; atomic

execution of

commands

blocks and

scripts;

Table 3

Comparative characteristics of the most popular

IMDG in terms of productivity

Name GridGain
Hazelcast

IMDG
NCache

Oracle

Coherence
Redis

Concurrency yes yes yes yes yes

Durability yes yes yes yes yes

In-memory

capabilities
yes yes yes yes yes

XML support yes yes no no no

Primary

database model

Key-value

store;

RDBMS;

Key-value

store;

Key-value

store;

Key-value

store;

Key-value

store;

Partitioning

methods
Sharding Sharding Sharding Sharding Sharding

Due to Tab. 3, we can see that all compared systems implement the basic

ICSFTI2020 33Section 1. FT

functions that must be present in the IMDG system for it to be possible to effectively

interact with it and obtain optimal performance.

Actual scientific researches and issues analysis. At the moment, there is very

little scientific research in the public domain that sheds light on this issue. However,

there are practical implementations of Multi Master Replication in IMDG systems,

such as Redis [1], but this topic is not sufficiently covered in publications.

Uninvestigated parts of general matters defining. This paper is devoted to

the study and analysis of the proposed model of the IMDG system, taking into account

the need for fault tolerance. The research focuses on the implementation of Multi-

Master Replication for IMDG.

Research objective. The objective of this paper is to propose a model of fault-

tolerant IMDG system taking into account the minimum amount of data movement

within the cluster.

General structure model. Fig. 1 presents a sceme of a three-tier IMDG system

with Multi-Master Replication implementation of fault tolerance.

Fig. 1 General model structure

Due to Fig. 1, the Master Tier is an intermediate layer between the client and

the server and it is this structure that allows storing the last state of the cache and

synchronize it between all components of the Master Tier and the Cluster Tier.

Table 4

Tiers description

Name Description

Client Tier
The client tier represents the user interface through which the

user makes requests to the system.

ICSFTI202034 Section 1. FT

Ended table 4

Name Description

Master Tier

This tier is an intermediate layer client and cluster . It receives
requests from the client and transmits them to the cluster tier.
Its main task is to preserve the latest state of data in the cluster
(using non-volatile memory), constant monitoring of the
cluster for changes in storage and synchronization between all
servers at this tier and all servers at the cluster tier (Delta
Tracking).

Cluster Tier

A cluster tier is a distributed in-memory storage. Accepts client
requests from master tier and performs them. Also, each
cluster-level server stores a copy of the data state in the cluster
using non-volatile memory.

Tab. 4 analyzes and describes the purpose of each system level.

Fig. 2. Algorithm of systems actions when the user adds data to the cluster

Fig. 2 shows how the system creates and sends a copy of the entire data set to

its respective components when the cache status is updated.

The following describes the stages of the algorithm shown on Fig. 2:

1. The Master Trier server receives a request from the client and, in accordance

with the balancing mechanism, transmits a request to the appropriate cluster server;

2. The Master Tier server updates its file with last state of the cluster;

3. The Master Tier server sends the updated system status file to all other

Master Tier servers and all Cluster Tier servers;

4. All servers that received the file update their own files of the latest system

state;

5. The Cluster Tier server that executed the client request sends a response to

the Master Tier server;

6. The Master Tier server sends a response to the client;

ICSFTI2020 35Section 1. FT

Fig. 3. Algorithm of system actions in case

of failure of one of the cluster layer servers

Fig. Figure 3 shows exactly how the system can recover data if one of the

cluster servers fails. Using a copy of the entire dataset, the system determines what

was on the inaccessible server, balances the system with the new number of available

servers, and loads the data into their RAM.

Let‘s consider the stages of the algorithm shown in Fig. 4:

1. The Mater Tier server detects that one of the cluster servers is not available;

2. The Master Level server determines what data was on the server that is

currently unavailable ;

3. According to the balancing mechanism, it is calculated which servers should

load the data of the inaccessible server to their RAM;

4. The Master Tier server sends requests to add data to the appropriate servers;

5. Cluster Tier servers add the necessary data to their cache;

ICSFTI202036 Section 1. FT

6. The Master Tier server updates its file of the last state of the cluster;

7. The Master Tier server sends the updated system status file to all other

Master Tier servers and all Cluster Tier servers;

8. All servers that received the file update their own files with the latest system

status;

Fig. 4. Algorithm for restoring the state

of the system after rebooting the cluster

Fig. Figure 4 shows exactly how the system can restore its previous state after a

scheduled or unplanned shutdown of all cluster servers. This approach allows the

maintenance of the entire cluster without the risk of losing cached data.

Let‘s consider the stages of the algorithm shown in Fig. 4:

1. The Master Tier server determines what data was on each cluster server;

2. The Master Tier server sends requests to add data to the appropriate servers;

3. Cluster Tier servers add the necessary data to their RAM;

4. The Master Tier server updates its file of the last state of the cluster;

5. The Master Tier server sends the updated system status file to all other

Master Tier servers and all Cluster Tier servers;

6. All servers that received the file update their own files with the latest system

status;

The main advantage of the presented model is the absence of data movements

within the cluster. If data were moved directly between cluster servers, this would

necessitate rebalancing the cluster after each such move. And this in turn leads to a

significant reduction in the speed of the entire system.

Example of system operation. Fig. 5 - 6 shows a fragment of the software

implementation of the request handler and an example of interaction with the system.

ICSFTI2020 37Section 1. FT

Fig. 5. A fragment of the software implementation

of the command handler in .NET 5 environment

Fig. 6. Example of client interaction with the system

As seen in Fig. 5, the command handler receives the user's request, determines

the type of request, checks the validity of the argument and executes it. If the received

command does not exist, the handler returns the corresponding message.

As seen in the Fig. 6, the client part of the system is presented as a console

ICSFTI202038 Section 1. FT

application. The user enters the query, that query is then checked by the command

handler and executed. The result is displayed on the user's console.

Conclusions. The paper demonstrates a general model of an IMDG system with

a fault tolerance mechanism based on Multi-Master Replication. The proposed model

eliminates the need to move data within the cluster, which in turn does not reduce

performance.

There are several areas for further work. One of them is the development of

interaction protocols between all levels of the system. In addition, further research in the

field of developing efficient algorithms for multi-server requests is possible and should

be considered. These changes will significantly increase the efficiency of the system.

REFERENCES

1. Sanfilippo S. Redis, 2015. URL: https://github.com/antirez/redis

2. System Properties Comparison GridGain vs. Hazelcast vs. NCache vs.Redis.

URL: https://db-engines.com/en/system/GridGain%3BHazelcast%3BNCache%3

BRedis

3. Ivanov N. GridGain, In-Memory Data Grid: Explained..., 2012. URL:

4. https://www.gridgain.com/resources/blog/in-memory-data-grid-

explained

5. Репликация данных. URL: https://ruhighload.com/%D0%A0%D0%

B5%D0%BF%D0%BB%D0%B8%D0%BA%D0%B0%D1%86%D0%B8%D1%

8F+%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85

AUTHORS

Yaroslav Hrab – 4th year student, Department of Computer Engineering,

National Technical University of Ukraine ―Igor Sikorsky Kyiv Polytechnic Institute‖.

Email: jkjkjmenq@gmail.com

Artem Volokyta (supervisor) – associate professor, Department of Computer

Engineering, National Technical University of Ukraine ―Igor Sikorsky Kyiv

Polytechnic Institute‖.

 E-mail: artem.volokita@kpi.ua

ICSFTI2020 39Section 1. FT

https://github.com/antirez/redis
https://db-engines.com/en/system/GridGain%3BHazelcast%3BNCache%253%20BRedis
https://db-engines.com/en/system/GridGain%3BHazelcast%3BNCache%253%20BRedis
https://www.gridgain.com/resources/blog/in-memory-data-grid-explained
https://www.gridgain.com/resources/blog/in-memory-data-grid-explained
https://ruhighload.com/%D0%A0%D0%25%20B5%D0%BF%D0%BB%D0%B8%D0%BA%D0%B0%D1%86%D0%B8%D1%8F+%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85
https://ruhighload.com/%D0%A0%D0%25%20B5%D0%BF%D0%BB%D0%B8%D0%BA%D0%B0%D1%86%D0%B8%D1%8F+%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85
https://ruhighload.com/%D0%A0%D0%25%20B5%D0%BF%D0%BB%D0%B8%D0%BA%D0%B0%D1%86%D0%B8%D1%8F+%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85
mailto:jkjkjmenq@gmail.com
mailto:artem.volokita@kpi.ua

