326 ICSFTI2018 Section 4. GN

YK 004.75
0. M. Bunorpanos,
M. O. baiinuxkos

IMATAHHS AKOCTI MOBLJIBHUX
JOJATKIB HA OCHOBI IX TECTYBAHHA

MOBILE APPLICATIONS QUALITY ISSUES BASED ON TESTING

VY crarti po3mIIAIAEThCsl MUTAHHS MIJBUINCHHS SKOCTI MOOUIbHUX JoAaTkiB. J[ist
IIOTO BHUKOPUCTOBYETHCSI TIOBHOIIIHHE TECTYBaHHsSI, SIKE BKIIIOYA€ B ce0O€ TECTyBaHHS
OKpEMHX MOJYJIIB JOJATKiB, TECTYBaHHS IOBEAIHKM BCHOTO JOJATKy Ta TECTYBaHHS
MOBE/IIHKU JIOJIATKY TIi/I BEJIMKUM HaBaHTaKEHHsM. J[JIs1 TEeCTyBaHHSI BUKOPUCTOBYIOTHCS
migxoau Given-When-Then, Behavior Testing, Fuzz testing Ta Performance Testing.

KuarouosicinoBa: tecryBanns, Given-When-Then, Behavior Tests, Fuzz tests,
Performance Tests.

The paper deals with the issues of increasing quality of mobile applications
using testing. As main testing types used Given-When-Then, Behavior Testing, Fuzz
testing and Performance Testing. All these testing types cover testing separate modules
of application, testing the behavior of whole application and testing application under
unexpected cases of usage.

Key words: testing, Given-When-Then, Behavior Tests, Fuzz tests, Perfor-
mance Tests.

Target setting. Due to growing number of mobile applications appeared last
time, the question of their quality has become the main thing to think about.

Actual researches and issues analysis. During last time some big companies
made this topic one of the most discussed at their conferences, but it’s still isn’t
covered enough.

Uninvestigated parts of general matters defining. There is a huge lack of
works, describing Fuzz and Performance testing of mobile applications. Moreover,
even usual Given-When-Then and Behavior tests remain investigations. And the
biggest gap in all these investigations in connections all this different testing types into
one stable ecosystem.

The research objective. The purpose of this paper is to investigate mobile
applications testing types and their combination. As a solution, the article will focus on
creating one single ecosystem of different testing techniques which can show as much
as possible bugs of mobile applications. This approach will help all the developers to
increase the quality of their applications and reduce the number of application crashes.

The statement of basic materials. In general, testing is a process of writing
some code, which runs app modules or the whole app, performs some actions, collects
results and checks their equality to the expected result, provided by developers [1].
Testing can be divided into several types. The main testing types, applicable to the
most popular mobile operating systems, 10S and Android, are:

1. Unit testing - tests individual parts of code for correctness, using an automated
test suite. A good unit test assures the functionality expecting out of the unit is correct. A
good unit test is repeatable, fast, readable, independent and comprehensive.

2. Given-When-Then testing - similar to unit testing, but declares strong format
of test, which must be inherited to achieve the proper result.



Section 4. GN ICSFTI2018 327

3. UI Testing - takes a flow that the user might follow and ensures it produces
the right output. Can be performed both on real devices or emulators and simulators.
Given the same state, the Ul test always must produce the same output. The input to
the test in the user clicks and the output is the screen.

4. Behavior testing - very similar to Ul testing, but instead of testing the whole
user flow, test small user actions.

5. Fuzz testing - unit tests and UI tests are user to ensure that the expected
output happens when the expected input is used. However, users can be unpredictable
and can do unexpected things. For such cases comes the fuzz testing. It introduces a
random stream of events into app and records result. It’s a stress test which simulates
random presses on the screen. This is very similar to Ul testing, but it has no input and
it doesn’t check some defined user flow.

6. Performance testing- gathers performance metrics of the app to ensure that
application doesn’t take up device resources. This metrics include network usage,
memory usage, battery drain.

7. Continuous Integration is a tool to collect all the above techniques into one
flow. It is a command line tool, which is hosted on external server and observes
application repository. When a developer performs commit, this tool takes the
application from this commit and performs all the tests. If all of them are success, then
the tool pushes all the changes to remote. In other case, it notifies the developer, that
something is wrong with the app and must be fixed before pushing [2].

Table 1 illustrates all the testing types and native frameworks, used on iOS and
Android platforms for these types of testing [3].

Table 1
Testing types and native frameworks

Testing type

108 native framework

Android native framework

Unit testing

XCTest

JUnit

Given-When-Then testing

UI testing

XCUITest, Xcode

Espresso, Espresso Test

(only for collecting data)

UI Test Recorder Recorder
Behavior testing - -
Fuzz testing - -
Performance testing Instruments Android Monitor

(only for collecting data)

Continuous Integration

As the table shows, native testing frameworks on each platform don’t provide
developers with all the required tools to performs full mobile application testing.
Moreover, the don’t provide anything to perform Given-When-Then testing and are
not suitable for Behavior Testing [4].



328 ICSFTI2018 Section 4. GN

The correct testing frameworks. The correct testing frameworks must include
all the required tools to perform all the given testing types. To achieve these
requirements, were developed next frameworks.

Table 2
Developed frameworks for testing
Testing type i0S framework Android framework
Unit testing Quick+Nimble JUnit
Given-When-Then testing | SwityGWT KotlinGWT
UI testing XCUITest, Xcode Ul Test Recorder | Espresso, Espresso Test Recorder
Behavior testing Quick+Nimble KotlinBDD
Fuzz testing UI AutoMonkey monkeyrunner
Performance testing New Relic Mobile New Relic Mobile
Continuous integration Jenkins Jenkins

Experiments. To check developed frameworks, was developed a small notes
application. After that, one it’s copy was covered by 30% using native frameworks of
each platform. The real usage of this app showed ten crashes per week for one thousand
users. The result seems to be not bad, but testing app with developed frameworks leads
to 50% code coverage and only one crash per week for one thousand users. The
difference is big even at this point, but scaling app to ten thousands users leads to one
hundred crashes per week for the version, tested by native frameworks, while the
version, tested with developed frameworks achieved the result of ten crashes per week.

Conclusion. The paper has demonstrated the ability of proper testing to
decrease number of crashes of mobile application up to ten times even on the small
audience. The developed frameworks can be used with any application and don’t
required lots of time to develop all the test types. Using such combination of
frameworks together with continuous integration produces qualitative results.

There are still several directions for future work. One is to develop frameworks
for UI Testing for both platforms to detect different UI bugs of applications. Another
is to increase simplify setup of all these frameworks and continuous integration. These
changes will definitely improve the result.

References

1. Daniel Knott (2015). Hands-On Mobile App Testing: A Guide for Mobile
Testers and Anyone Involved in the Mobile App Business. Addison-Wesley
Professional; 1 edition, May 28, 2015.

2. Paul Blundell, Diego Torres Milano (2015). Android Application Testing.
Packt Publishing - ebooks Account, April 30, 2015.

3. Vijay Velu (2016). Mobile Application Penetration Testing. Packt Publishing -
ebooks Account, March 18, 2016.

4. Mobile Testing: Complete Guide to Test your Mobile Apps. Update date:
February 15, 2018. URL: https://www.guru99.com/testing-mobile-apps.html (application
date: April 29, 2018).




Section 4. GN ICSFTI2018 329

JOBIIKAIIPOABTOPIB

BI/IHOFpaILOB IOpiit MukonaiioBuu — CTapIIMi BUKJIAJad, kadenpa obOumciio-
BaJIbHOI TexHikW, HamioHaneHuii TexHIYHUN yHIBepcuTeT Ykpainu «KuiBcbkuil mosmi-
TEXHIYHHUH 1HCTUTYT iMeHi [rops CikopchbKOroy.

Vinogradov Yurii — associate professor, Department of Computer Engineering,
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.

baitinkoBMukonaOnekcaHapoBUY - CTYJIEHT, KageapaoOuuCIIOBaIbHOI TEXHIKH,
HamionanbHuil TexHiuHUM yHiBepcuTeT YkpaiHu «KuIBCBKUI MOMITEXHIYHMN IHCTUTYT
imeHi Irops CikopcbKoroy.

Baidykov Mykola - student, Department of Computer Engineering, National
Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.

Email: nbaidikoff@gmail.com

FO. M. Bunorpanos, M. O. baiinukos

IMUTAHHSA AKOCTI MOBIJIBHUX
JOJATKIB HA OCHOBI IX TECTYBAHHA

AKTyaJIbHICTh TeMH JocaimkeHHsl. [IpobGnema skocTi MOOUTPHUX J0JATKIB
CTaJla aKTyaJlbHOIO B OCTaHHI JHI y 3B’S3KYy 3 PI3KUM 30UIBIIEHHS iX KIIBKOCTI Ta
3pOCTaHHSM TOMUTY. Lle CIpUYMHUIO MOSIBY BEIMKOIT KUTBKOCTI TOJATKIB 32 KOPOTKHI
nepioj yacy 0e3 HaJexXHOro TecTyBaHHs. KpiMm Toro, cami po3poOHHKH CepeloBHIIL
CTBOPEHHS J0JIaTKIB HE JAIOTh JOCTAaTHBO PECYPCIB JUIsl HAMMCaHHS SKICHHUX TECTIB.
JlaHa cTaTTs MpUCBSYEHA CTBOPEHHIO ONTUMAIBLHOTO HAOOPY pPecypcCiB, K 103BOJIATH
IIPOBOJIUTH ITOBHOIIIHHE TECTYBaHHS JIOAaTKIB.

IloctanoBka mpodaeMHu. BiiACyTHICTh SIKICHUX pecypciB AJisS MOBHOIIHHOTO
TEeCTyBaHHS MOOUIBHHUX JIOJATKIB Ta 3aCTOCYBaHHS aBTOMATH30BAHOT'O TECTYBaHHSI.

AHAJI3 ocTaHHIX JocaikeHb i myOJgikaniii. [IpoTsroM ocTaHHIX pOKIB
3’SIBIISIETbCS BCE OLIBINE Mpallh MPUCBSUYCHUX TECTYBaHHIO MOOLIBHMX JojaTkiB. [Ipore
BCl BOHH 30CEPE/DKYIOThCSI Ha SKOMYCh OJHOMY METOJI TeCTyBaHHs (HaifuacTiiie Ha
FOHiIT TecTyBaHH1), y TOM Yac sSIK MaTepiaiiB MPo 3arajibHe TeCTYBaHHS 31 3aCTOCYBAHHSIM
JEK1TBKOX PI3HUX METO/IIB MaiKe HEMAE.

BujisieHHs1 HeoCTiIKeHNX YaCTHH 3arajibHoi npoodJemu. /lana crarTs npu-
CBSIYCHA aHAJI3y ICHYIOUHX PIIIEHb Ta CTBOPEHHIO HOBHIX /I MOBHOI[IHHOTO TECTY-
BaHHS MOOUIBHMX JoAaTKiB. JlocmipkeHHs c(oKycoBaHO Ha BHBUYEHHI OCOHBHHX
METOJMK TeCTYBaHHS, X MepeBar Ta HeJI0MIKIB.

IlocTanoBKka 3aBAaHHs. 3aBISHHIM € CTBOPUTH ONTHMaIbHUN HaOIp IHCTPY-
MEHTIB JUIsl BCEOXOIUTIOIOUOTO TECTYBaHHS MOOUIBHUX JOJATKIB Ha JBOX CyYacHHUX
mwiatdopmax, 10S Ta Android.

BuxnaneHnnsi ocHoBHOro martepiajy. [IpoBeneHo anani3 cTaHIapTHUX 3ac001B
tectyBaHHs g 10S Ta Android, BuauleHO iX HaWroyioBHimN Hemodiku. OmucaHO
BUMOTH JI0 3aC001B TECTYBaHHS, SIKI TOBMHHI 3a0€3M€YNUTH MOKJIUBICTh TOBHOIIIHHOTO
MOKPUTTS TeCTaMH Oyab-sKoro 1oAatky. CTBopeHo HeoOX1H1 3aco0u.

BucnoBku. IIpoananizoBaHo CTBOpeHI 3acoOM TECTyBaHHS Ha HEBEIHMKOMY
JOJIaTKy 3 Pi13HOIO KUIBKICTIO KOpUCTyBauiB. HaBeseH1 pe3ynbTaTu eKCIIEpUMEHTIB Ta
aHaJji3 BUIIE BKa3aHUX KPOKIB.

Kuarouosi ciaoBa: tectyBanns, Given-When-Then, BehaviorTests, Fuzz tests,
PerformanceTests.



