
 

UDC 004.021 

Sukhobrus Oleksandr, Pavlo Rehida.  

REVIEW OF METODS OF ENVIRONMENT  

GENERATION IN COMPUTER GAMES 

The article discusses different approaches to generating an environment in 

computer games. The article is divided into an overview of the main technology for 

creating natural landscapes and several modifications of methods of creating man-

made structures made of rooms connected by corridors. 

Target setting. Software generation has many advantages and disadvantages 

and for its proper use requires an understanding of its advantages and disadvantages. 

The research objective. The purpose of this article is to review the methods of 

generating the environment and highlight their advantages and disadvantages to 

understand the possibility of their use. 

 

The task of environment generation in games can be divided into the following 

subtasks: 

 Landscape generation 

 Generation of structures 

Landscape generation. The generated landscape serves as a background for 

the main game activities and needs to be supplemented by other methods of 

generation, or pre-created objects, which is its main drawback. 

The main way to generate a landscape is Perlin noise [2], or its modification. It was 

created by Ken Perlin in 1983 to generate images, but was later used in computer games 

to generate landscapes. Compared with the noise in which all values are independent, 

Perlin noise is smooth transitions between adjacent values, as shown in Fig. 1. 

 

a) 

 

b) 

Fig. 1. The result is obtained by:  

a) noise with independent values; b) Perlin noise 

ICSFTI202078 Section 1. FT



 

The differences in obtaining Perlin noise from completely random noise is to 

assign to each point of the grid with a certain step a unit vector (gradient vectors), 

rather than a random number to each point in space, as shown in Fig. 2. 

 

Fig .2. Perdlin two-dimensional noise grid with gradient vectors 

In the process of obtaining the generation result, the vectors are used to further 

calculate the noise values at points lying in the cells of the grid. To calculate the values 

at each point, the operations of the scalar product of gradient vectors on the 

corresponding vectors of distances to the point are performed. The result of this 

process is 4 values for two-dimensional noise and 8 for four-dimensional, which 

determines the complexity of the algorithm O(2
n
). The final step in determining the 

values at a point is to interpolate the values obtained in the previous step. 

Generation of structures. Thanks to the ability to create incentives for the 

player, structures can act as independent objects of the game environment or 

complement the generated game landscapes. Generation of structures is usually 

performed by placing certain pre-created by the developer or generated in the process 

parts in a certain order provided by the game logic. In most cases, such parts are the 

rooms and corridors that connect them. 

Static grid. One of the first and easiest methods of generation used today is to 

place rooms in the middle of the cells of a static grid and then connect them with the 

help of corridors. Due to the ability to easily predict the number and location of rooms, 

this method is well suited for the use of pre-created rooms. The downside is the obvious 

layout of the rooms. An example of a game using this method is shown in Fig. 3. 

 

Fig. 3 Level generated using a static grid 

ICSFTI2020 79Section 1. FT



 

Binary space partitioning [3]. This method belongs to the more complex 

methods of placing rooms. By dividing the space of the playing field into two parts, a 

binary tree is created, the child of each node are areas that have adjacent edges. 

This method allows you to add more randomness to the placement of rooms on the 

playing field, but at the same time increases the complexity of the placement of corridors and 

rooms created by the developer. An example of the result of this method is shown in Fig. 4. 

 

Fig. 4 Structure generated using a binary tree 

Tunneling method [4]. The method is based on the gradual laying of corridors 

on the playing field and the creation of rooms next to them. The main disadvantage is 

the complexity of writing algorithms for tunneling and the direct relationship between 

their quality and the quality of the generated structure. The advantages include the fact 

that with this method you can achieve the generation of a structure that looks designed 

by hand. . An example of the result of this method is shown in Fig. 5  

 

 

Fig. 5 Structure generated using the tunneling method 

ICSFTI202080 Section 1. FT



 

Conclusions. The article describes the advantages and disadvantages of 

methods of generating the environment. Such disadvantages include the need to 

supplement the generation of landscapes to provide incentives for the game, the 

difficulty of including manually created elements in structures generated by binary 

space division, and the predictability of the environment created by static grid. 

References 

1. Albert Carri´on D´ıaz. (Spring 2015). Procedural generation applied to a 

video (pp. 19-20) 

2. Eevee. ( 2016, May 29). Perlin noise. [Blog post] Retrieved from 

https://eev.ee/blog/2016/05/29/perlin-noise/ 

3. Lluis Esquerda. (2013, December 22). Dungeon generation using BSP trees. 

[Blog post] Retrieved from https://eskerda.com/bsp-dungeon-generation/ 

4. Josh Ge. (2014, June 20). Mapgen: Tunneling Algorithm. [Blog post] 

Retrieved from https://www.gridsagegames.com/blog/2014/06/mapgen-

tunneling-algorithm/ 

AUTHORS 

Oleksandr Sukhobrus– student, Department of Computer Engineering, 

National Technical University of Ukraine ―Igor Sikorsky Kyiv Polytechnic Institute‖. 

E-mail: sanysuh@gmail.com 

Pavlo Rehida (supervisor) – assistant professor, Department of Computer 

Engineering, National Technical University of Ukraine ―Igor Sikorsky Kyiv 

Polytechnic Institute‖.  

E-mail: pavel.regida@gmail.com 

  

ICSFTI2020 81Section 1. FT

https://www.gridsagegames.com/blog/2014/06/mapgen-tunneling-algorithm/
https://www.gridsagegames.com/blog/2014/06/mapgen-tunneling-algorithm/
mailto:sanysuh@gmail.com
mailto:pavel.regida@gmail.com

