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Relevance of the research topic. Voice Interfaces (VUI) are an evolution of 

interaction that makes it easy to enter or receive information. Creating interfaces that 

support and offer more ergonomic and natural forms of human - machine dialogue 

predetermined by the introduction of information technology in professional and 

everyday human activities. Therefore, the development of specialized voice interface 

tools based on speech recognition technologies is an urgent scientific and practical task. 

Formulation of the problem. Digital processing of speech signals is the basis 

for building voice interfaces. The article proposes a modification of the algorithm for 

the method of hidden Markov models in speech recognition for the voice interface, 

which is optimized for implementation on FPGA. 

Analysis of recent research and publications. Currently, the following areas of 

research and development can be distinguished in the field of improving performance 

and implementing independent speech recognition modules for the voice interface: 

 firstly, the introduction of hardware support for algorithms preliminary 

processing and selection of signs (for example, the implementation in programmable 

logic circuits (FPGA) of a block for finding Mel Frequency Cepstral Coefficient) [1, 2]; 

 secondly, hardware implementation of recognition algorithms. 

The latter direction is represented by many works. At the same time, there is a 

noticeable general trend in the development of hardware implementations of the 

recognition unit: 

1) user-programmable logic is used as microcircuits because of their availability 

and versatility; 

2) in the implementation of speech recognition devices, the main focus is on the 

introduction of hardware support for hidden Markov model algorithms - the forward 

motion algorithm and the Viterbi algorithm. As a prerequisite for this, the high 

computational complexity of the indicated algorithms is indicated. 

Highlighting unexplored parts of a common problem. To solve the problems 

of hardware implementation of speech recognition algorithms, both hardware methods 
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are proposed (for example, in [3] it is proposed to construct a systolic matrix for 

performing calculations using forward and Viterbi algorithms) and algorithmic ones. 

For the development of independent modules for the tasks of the voice interface, the 

use of a small dictionary is characteristic, which distinguishes this problem from the 

general approach and speech recognition methods. 

Object of study. The purpose of this article is to develop a modified speech 

recognition algorithm based on hidden Markov models with less computational 

complexity, which is optimized for implementation on FPGA. 

Statement of the main material. Discrete Markov chains describe random 

processes that occur in discrete time and at each moment reside in one of i I state, the 

set of states I is finite or countable. The transition from a state to a different state is 

random and is determined by the transition matrix A = {aij}, where aij is the transition 

probability from state i to j. The initial state is also randomly selected according to the 

vector aij of the initial distribution π = {πi} where πi is the probability that the process 

is in state i at the initial moment. 

During its evolution, the Markov process passes through a sequence of states Q 

= q1, q2, ... qT in T cycles. The probability that at times 1,2, ..., T these states turned 

out to be i1, i2, ..., iT is determined as follows: 

P(q1=i1, q2 = i2,….,qT=iT)  =  πq1i2,…,qT=iT)                            (1) 

In this case, the transition to the current state is determined only by the previous 

state. 

Pqi|Q1
i-1

 = Pqi|qi-1                                                                                  (2) 

where Q1i-1 = q1, q2, ..., qi-1. This feature of Markov chains is called the Markov 

property or Markov assumption, and the process itself is characterized as a 

―memoryless process‖ [3]. 

This model can be more complicated by separating the states and observed 

events in such a way that the occurrence of an event in each state will also be 

probabilistic. The result is a double stochastic process with a hidden layer - a random 

sequence of states, and an external layer of observed random output values. Such a 

model is called the hidden Markov model (HMM). 

For HMM, in addition to the set of states I, it is necessary to introduce a finite 

set of observable values of C (alphabet) . During its operation, the HMM emits a chain 

of observed values O = (o1,o2,…,oT), o  C 

Thus, a discrete hidden Markov model is determined using: 

1. C = {c1,c2,…,cM} - the alphabet of the observed values; 

2. I = {i1,i2,…iN}  - sets of states accepted by the system; 

3. A={aij} - transition probability matrices; 
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4. B= {bi(ck)} – matrix of output probabilities, where bi(ck) is the probability of 

observing the symbol ck  C when the model is in state i; 

5. π = {πi} – probability vectors of the initial state. 

A hidden Markov model can be defined as a triple λ = (A,B, π). 

The use of HMM in speech recognition is based on the construction of phonemes 

stochastic models, words and entire phrases. The choice of a particular language object 

depends on the tasks that the developed speech recognition system should solve. The 

chain of feature vectors plays the role of the observed sequence. If the feature vector is a 

continuous value (for example, a set of Mel-frequency cepstrum coefficients), then a 

mixture of Gaussian probability densities is used to model it. In this work, the obtained 

Mel-frequency cepstrum are quantized, which allows the use of discrete one-dimensional 

bi (ck). 

To use hidden Markov models in speech recognition, it is necessary to solve the 

following three problems [2]: 

1. The assessment task - the model λ and the output sequence O are given. To 

find the probability P (O | λ) which means, determine the probability that the model λ 

generated the sequence O. 

2. Decoding task - a model λ and an output sequence O are given. To find the 

most likely sequence of states Q that could spawn O. 

3. Learning objective - the model and the training sequence O are given. 

Choose the parameters of the model λ in such a way as to maximize the probability P 

(Q | λ). 

The use of HMM for recognition of isolated words is based on the calculation of 

the direct probability distribution function ά tj   which is defined as the probability of 

observing the sequence Ot = (o1,o2,…ot), being in state j at time t on the model λ = (A, 

B, π ) [5]: 

Obviously, that the calculation of ά t (j) is recursive. To increase efficiency, the 

recursion can be converted to a loop. By reaching the end of the observed sequence, 

which means until t = T, we need to add ά T j for all states, obtaining the probability of 

observing the sequence O = (o1,o2,…,oT) for a given HMM λ: 

                  
                                                   (3) 

This probability can be used in the recognition of isolated words: each word is 

modeled by HMM, and when recognizing a word, it is necessary to choose the HMM 

that is most likely to generate the observed sequence O. 

w* = argmaxw = WP(O| )λW                                         (4) 

When HMM training, it is necessary to evaluate its parameters λ = A, B, π to 

maximize the probability of observing the training sequence P (O | λ). 
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To eliminate the decrease in Pt (O | λ), there are two tricks: scaling and 

replacing the value ά t (j) with its logarithm. The first method introduces a scaling 

factor st such that                 
    

              
                                                 (5) 

Multiplying ά t j by st every step t, at t = T, the product of scaling factors 

accumulates S(T) =     
    Final probability P (O | λ)= Pt (O|λ) fully expressed in 

terms of S (T): 

P(O|λ)  = 1 / S(T)                                              (6) 

The advantage of using scaling factors is that you can go to the logarithm of P (O | 

λ), which decreases much more slowly. 

                  
                                               (7) 

In addition to eliminating the exponential decrease of P (O | λ), the use of the 

logarithm allow to replace the multiplication operations by additions, which positively 

affects the algorithm speed. 

If we introduce the logarithm a t (j) and do all the calculations only in the 

logarithmic representation is: 

log ά1(j) = log πj + log bj (o1)                                             (8) 

                                          
 
                                   (9) 

To calculate the sum logarithm where the pairs aij ά t-1(i) and ai+1j  ά t-1(i+1) are 

P1 and P2: 

logb (P1+P2) = logb P1 +logb (1+b 
logbP2 – logbP1

)                          (10) 

The essence of the modification of the algorithm, based on the simplification of 

the calculation of the sum of the logarithms in (9). We transform the formula (9), thus: 

logb(P1 + P2) = logbP1 + logb(1 + P2 / P1 ) =logbP2 + logb(1 + P1 / P2 )    (11) 

If P1 > P2  then logb(P1 + P2) logbP1 And vice versa: if P2 > P1 then logb(P1 + 

P2) logbP2  . Then you can replace the exact calculation with an approximate one: 

logb(P1 + P2) ≈ logb (max(P1,P2))                              (12) 

Considering, that the logarithm is a monotonically increasing function, we 

obtain: 

logb(P1 + P2) ≈ max(logbP1 , logbP2  )                            (13) 

In this case, for ά t(j) : 

log ά t(j) = logb (ot) + log (      
 
       ) ≈ 

≈ logb (ot)  + max(logά ij+    log ά t-1j  (i)) 
(14) 

Forward Algorithm Completion which is the calculation of P (O | λ), can be 

replaced by the calculation          
 
    of the model λ. 
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In the proposed modification, multiplication operations are completely absent 

and only addition is used. 

To check the adequacy of the model, the Matlab package was used possessing a 

huge library of mathematical functions and means of visualizing the results. In the 

model for speech recognition, it is necessary to prepare the initial data for the 

organization of its comprehensive testing. These initial data represent a speech base 

that includes a sufficient number of training and test cases. 

The recognition result was evaluated using traditional metric classification 

tasks: Precision, Recall, and F1 metric. Let w * (x) be the class predicted by the 

classifier for pronouncing x  X (where X is the set of test cases), and y (x) be the true 

class of x, so that w *: X → W and y: X → W. To evaluate the classification results, a 

confusion matrix K = kij is constructed for i, j = 1, ..., Ξ, in which each element 

represents the number of predictions that x belongs to class i, while its true class is j: 

kij =                                    
                         (15) 

The indicator function is used in formula (15) 

 e = 1 if e is true 

 e = 0 if e is false 

Thus, the diagonal elements of the error matrix contain the number of correct 

predictions for each class, while the remaining elements contain the number of 

erroneous predictions. It is convenient to normalize the error matrix by the number of 

test cases for each class, so kij would be the conditional probability of predicting the 

class w * xl = i, provided that the true class x is y x = j: 

kij = P(w* (x) = i| y (x ) = j) = kij / m                                    (16) 

The diagonal values of the normalized error matrix contain the values of the 

completeness metric Ri for each class i. The completeness metric Ri is the probability 

of a correct prediction, provided that the true class x is i: 

Ri = P(w* (x) = i| y (x ) = j) = kii                                      (17) 

Another metric for evaluating classifier performance is Pi accuracy for class i. 

The accuracy of Pi is the probability that the true class x is i, provided that the class w 

* (x) = i was predicted: 

Pi  = kii /     
  

 
                                                      (18) 

Finally, F1 (i), the metric for each class, is a combination of accuracy and 

completeness metrics that can be interpreted as their weighted average: 

F1( i )  = 2∙ (Pi∙Ri / Pi +Ri )                                             (19) 

The metrics described above provide an exhaustive assessment of the 

performance of the classifier. For each recognition method implemented in software 
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and in the Automated machine learning software model, the metrics described above 

and their average values in the Table 1 were calculated. 

As can be seen from the graph in Figure 1., although the recognition accuracy 

decreases with increasing dictionary size, it remains at the level of 0.9510 for a 

dictionary of 100 words. Usually, with a further increase in the recognition dictionary, 

accuracy only decreases. However, it should be noted that a dictionary of 100 words is 

sufficient for many voice recognition systems.  

Table 1. 

Calculation of the metrics and their average values 

Recognition method 
Completeness 

metric 
Accuracy metric F1 - metric 

Modified Algorithm P(O | λ ) 0.7820 0.8202 0.7790 

Arbitrary Sound Algorithm 0.9749 0.9510 0.9460 

 

Findings. The article analyzes the ways and methods of creating a voice 

interface, speech recognition methods are considered and the apparatus of hidden 

Markov models is selected. 

A method for implementing the algorithm based on the representation of 

probability using the flow intensity and approximate calculations using logarithms is 

developed, which made it possible to reduce its complexity. 

 

Fig. 1. The accuracy of word recognition. 

On a fixed speech base, the proposed implementation of speech recognition was 

investigated and the developed methods were evaluated. Dependencies of accuracy on 

various parameters of the selected length and sequence of words are obtained. 
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