
 

UDC 004.021 

Olga Rusanova, Igor Boyarshin, Anna Doroshenko.  

ENERGY-AWARE TASK SCHEDULING  

ALGORITHM FOR MOBILE COMPUTING 

The paper describes a new algorithm for task scheduling that utilizes the ability 

of processors and individual cores to dynamically switch between different operating 

voltage levels, thus sacrificing performance for energy saving and vice versa. The 

algorithm constructs a complete scheduling strategy and specifies the voltage level 

mapping for the tasks to be executed with in order to meet the desired time constraint. 

Key words: energy-aware task scheduling, voltage levels, mobile computing, 

time constraint. 

Fig.: 3, Tabl.: 1. Bibl.: 4. 

 

Target setting. With the rapid advancement of mobile computing technologies, 

it has become an essential problem on mobile platforms to satisfy the ever-growing 

demand of processing power while at the same time keeping the energy consumption 

levels to a minimum. It is thus important for the new scheduling algorithms to be 

developed that focus not only on delivering the most performant assignment possible, 

but also make the energy savings a core factor. 

Actual scientific researches and issues analysis. The research into the field 

has shown that there exist few papers that concern themselves with the issue of 

energy-aware task scheduling. The problem demands increasing attention especially in 

light of the accelerated spread of mobile technologies and their application as well as 

the advancements made in the development of processors capable of effective dynamic 

voltage level switching. 

Not investigated parts of general subject. The vast majority of scientific work 

related to the subject at hand either describes a purely abstract method to account for 

energy consumption or neglects such integral part of task scheduling as data 

transmission between the nodes altogether. For example, the authors of [1] do provide 

a simple method for accounting for the system energy consumption, but do not 

consider the cost of data transfer between the tasks. Therefore, it is only natural to 

develop an algorithm that better meets the real-world requirements. 

Research objective. The objective of this paper is to propose a new task 

scheduling algorithm that meets the following goals. First, the algorithm operates 

under realistic environment, namely the presence of transmission cost between nodes 

for data transfer. Second, considers the ability of modern processors to dynamically 

switch between different voltage levels depending on the nature of the task to be 

ICSFTI2020 107Section 2. RT



 

executed. And third, minimizes the total energy consumption of the system while 

satisfying the provided time constraint. 

Principal statements. For the rest of the paper the following aspects of the 

environment shall apply: 

 All cores are able to dynamically and independently switch between voltage 

levels V1 through VN, where N is the total number of voltage levels available in the 

system; the switching cost in terms of time and energy is negligible and considered zero. 

 Each core is able to perform an unlimited number of transmissions (both 

inbound and outgoing) simultaneously in parallel with the execution of the workload. 

 If two nodes are assigned to the same core their respective transmission cost 

is considered instantaneous and thus zero. 

 Any node can be assigned to any core and start its execution no sooner than 

all transmissions for it from parent nodes have finished. Root nodes (such that have no 

parent nodes) can be started immediately. 

 For each node its execution time and energy consumption values for each 

voltage policy are considered to be known prior to the execution of the algorithm and 

not to change or fluctuate during runtime. 

 At runtime each core shall change its voltage level in accordance with the 

execution policy of the task assigned to it at any given moment. 

General structure. The proposed algorithm has several stages and expects the 

following inputs: a directed acyclic task graph G that specifies the data relations 

between nodes and the corresponding transmission cost Ti,j of the link between nodes i 

and j for each link in the graph; for each node, a set of N pairs (Wi, Ei), where N is the 

total number of voltage levels available in the system, Wi and Ei are the corresponding 

weight (execution time) and energy consumption values associated with voltage policy 

i for this node; desired execution time D that denotes the maximum time constraint for 

the overall system of tasks; amount of cores C available to the algorithm, where each 

core is capable of switching between N voltage levels. 

The algorithm is as follows: 

1. Assign the slowest execution policy to all nodes in the system. 

2. Find the critical path CP with critical time CT based on the task graph G 

and current execution policies of each node. 

3. If CT is greater than the desired time D, then find the earliest node on CP 

that can improve its execution policy. If no such node is found, then the problem is 

unsolvable under the given constraints. Otherwise improve the execution policy of this 

node and go to Step 2. 

4. For each node based on its current execution policy find its early time E and 

late time L, corresponding to the earliest possible and latest possible execution start 

ICSFTI2020108 Section 2. RT



 

time of this node in order to meet the timing constraint D, not considering the 

transmission costs. Calculate the delta as the difference between L and E: d = L - E. 

5. Perform the task scheduling, prioritizing the nodes with lowest delta d and 

assigning each task no the core that would yield the earliest start time for the task 

considering the transmission costs. 

6. If the total execution time of the resulting system does not meet the time 

constraint D, then find the earliest node with start time greater than its late time. For this 

node, recursively find the earliest parent(s) that this node started immediately after, not 

accounting for transmission time, and whose execution policy can be improved. The 

resulting nodes are the ones that must be sped up in order for the initial node to be able 

to start earlier. Improve their policy and go to Step 4. If the process of finding such 

nodes does not yield sufficient results, then the system cannot be further improved to 

meet the time constraint and so the problem is unsolvable under given conditions. 

7. Otherwise if the system meets the desired time then output the mapping of 

the tasks to cores and the resulting execution policy of each task. 

Example. In order to help better understand the algorithm and confirm its 

validness, an example featuring the key aspects of the algorithm at work shall now be 

presented. 

For this example, the task graph is given in Fig. 1 along with the metrics of 

weight (execution time) and energy consumption (denoted W and E, respectively) for 

each of the two available voltage level policies for each task 0 through 6. Transmission 

cost for all links is considered to be 1. Let the desired time D be equal to 12. 

0 1

4

2 3

5 6

T

W

E

0 1 2 3 4 5 6

4 1 4

22 36 39

7 1 3 2

34 39 42 2034 18

4 2 1 5

3442 36 39

6 3 2 7

18

 

Fig. 1. The task graph and parameters of nodes 

ICSFTI2020 109Section 2. RT



 

The steps of the algorithm will be as follows. 

At first, all tasks are assigned the slowest execution policy. 

The critical path shall be found to be through tasks 0, 3, 5 with critical time CT 

equal to 15. As CT = 15 is greater than the desired time D = 12, the earliest task on 

critical path is found and its execution policy improved. In this case the execution 

policy of task 0 is improved. 

The critical path of the graph for the new configuration is recalculated and now goes 

through tasks 1, 4, 3, 5 with CT = 14. This CT is still greater than D = 12, so the earliest task 

on the CP is found (Task 1 in this case) and its execution policy improved. 

The critical path of the graph is recalculated yet again, this time it is through tasks 0, 

3, 5 with CT = 12. This critical time happens to be equal to the desired time D = 12, so the 

current configuration might just be enough. The algorithm moves to the next stage. 

The scheduling is done for the current configuration. The result of the 

scheduling is shown in Fig. 2. 

As the total time is 13 which is greater than the desired time 12, the algorithm 

shall find the earliest task whose start time was greater than its late time L. In this case 

such task is task 3: it should have started by 4 but started at 5. 

Now the algorithm shall recursively find the parent(s) of task 3 that potentially 

delayed its start and whose execution policy can be improved. 

The parents of task 3 are tasks 0 and 4. But task 0 did not delay the execution of 

task 3, as can be seen from Fig. 2: indeed, task 3 could have started at time point 4 as 

far as the data from task 0 is concerned. But task 4 with its transmission for task 3 

comes with no gaps before the start of task 3, that is why task 4 delayed the start of 

task 3. As the only parent of task 4 (task 1) cannot further improve its execution 

policy, the execution policy of task 4 is improved. 

 

Fig. 2. Intermediate scheduling result 

 

ICSFTI2020110 Section 2. RT



 

The scheduling is done for the new configuration of the system and is shown in 

Fig. 3. This time the total execution time of the system is 12 and meets the desired 

time. The final mapping of execution policies for the tasks is as follows: the fastest 

execution policy is set for tasks 0, 1, 4; the default execution policy is left for tasks 2, 

3, 5, 6. The total energy consumption for the system is thus 228 units. 

 

Fig. 3. Final scheduling result 

Testing. In order to test the algorithm a program suit has been developed in 

C++ that allows for easy testing of the system by printing out the steps the algorithm 

takes in each scenario. A random task graph generator has also been developed so that 

the system could be tested under numerous time constraints and configurations. The 

settings of the random task graph generator can be tuned to change the range of the 

node weights and data transmission volumes, as well as set the overall node count and 

the connectivity metric of the system. 

As a means of measurement of the efficiency of the algorithm a series of tests has 

been conducted. The inputs were generated in the following way: for a newly-generated 

task graph with connectivity C (where C is calculated as the number of links in the 

graph divided by the maximum possible number of links), calculate CTslowest as the 

critical time of the graph with all tasks set to the slowest policy,  CTfastest as the critical 

time of the graph with all tasks set to the fastest policy, Eslowest as the total energy 

consumption of the system with all tasks set to the slowest policy,  Efastest as the total 

energy consumption of the system with all tasks set to the fastest policy, and let desired 

time D be equal to the half sum of CTslowest and CTfastest; E and T are the resulting energy 

consumption and execution time of the system that the algorithm generated. 

The results of the tests for a number of runs are shown in Table 1. 

 

ICSFTI2020 111Section 2. RT



 

Table 1 

Testing results for different system configurations 

C CTfastest CTslowest Efastest Eslowest D E T 

0.3 

13 20 291 172 16 230 16 

18 28 345 204 23 251 22 

11 17 290 172 14 196 14 

0.5 

24 38 276 164 31 218 31 

24 37 350 208 30 274 29 

23 34 304 180 28 271 28 

0.7 

17 30 283 168 23 220 22 

27 44 296 176 35 253 33 

22 36 311 184 29 239 29 

0.9 

27 44 296 176 35 242 35 

30 47 317 188 38 263 38 

29 45 305 180 37 247 37 

 

It is clear from the results that if the desired time is set to be halfway between 

the slowest and fastest critical times, then the corresponding energy consumption is 

also halfway between its slowest and fastest setting, albeit with some deviations from 

the mean. From that the conclusion can be made that as the desired time changes 

linearly, so does the resulting energy consumption. The pattern is also repeated if the 

target point is set not in one half, but one fourth of the range. 

The predominant deviations towards the increment from the mean for the 

energy consumption levels in all cases can be explained in the following way: the 

fastest critical time can seldom be achieved because it is calculated without the 

account for the transmission costs. And in the case of actual planning those 

transmission costs prevent the system from reaching the target times. Thus, the 

algorithm is forced to allocate additional resources in the form of improving the 

voltage policies, and so the total energy consumption levels increase accordingly. 

Conclusion. With the development of new processors with the ability to 

dynamically switch between different voltage levels depending on the task being 

executed, a new series of task scheduling algorithms must be developed to utilize this 

ability in order to provide appropriate energy consumption levels on mobile platforms. 

The conducted studies of the new task scheduling algorithm for energy-aware 

scheduling have shown that it is more than capable of providing noticeable energy 

savings when the desired execution time of the system of tasks allows for it. 

 

 

 

ICSFTI2020112 Section 2. RT



 

References 

1. Li, Y., Chen, M., Dai, W., Qiu, M. (2017). Energy optimization with 

dynamic task scheduling mobile cloud computing. In Proceedings of the IEEE 

Systems Journal 11(1) (pp. 96–105). 

2. Liu, Y., Veeravalli, B., and Viswanathan, S. (2007). Critical-path based 

low-energy scheduling algorithms for body area network system. In Proceedings of the 

IEEE International Conference on Embedded and Real-Time Computing Systems and 

Applications (pp. 301-308). 

3. Bezerra, P. T. et al. (2013). Dynamic frequency scaling on android 

platforms for energy consumption reduction. In Proceedings of the 8th ACM 

International Conference on Modeling, Analysis and Simulation of Wireless and 

Mobile Systems (pp. 189-196). 

4. Mei, J., and Li, K. (2012). Energy-aware scheduling algorithm with 

duplication on heterogeneous computing systems. In Proceedings of the ACM/IEEE 

13th International Conference on Grid Computing (pp. 122–129). 

AUTHORS 

Olga Rusanova (supervisor) – associate professor, Department of Computer 

Engineering, National Technical University of Ukraine ―Igor Sikorsky Kyiv 

Polytechnic Institute‖. 

E-mail: olga.rusanova.v@gmail.com 

Igor Boyarshin – student, Department of Computer Engineering, National 

Technical University of Ukraine ―Igor Sikorsky Kyiv Polytechnic Institute‖. 

E-mail: igor.boyarshin@gmail.com 

Anna Doroshenko – student, Department of Computer Engineering, National 

Technical University of Ukraine ―Igor Sikorsky Kyiv Polytechnic Institute‖. 

E-mail: annadoroshenko03@gmail.com 

  

ICSFTI2020 113Section 2. RT


