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IN THE MODELING OF PHYSICAL PROCESSES 

The article gives an overview of modern approaches to the application of 

machine learning in the modeling of physical processes on the example of fluid motion 

in space. The structure and capabilities of artificial neural networks in the modeling of 

complex physical processes are described. 
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Target setting. Computational Fluid Dynamics is one of the most demandable 

field of mechanics, a hugely important subject with applications in almost every 

engineering field, however, fluid simulations are extremely computationally and 

memory demanding. Due this reason, decreasing of the computation time and memory 

usage of fluid simulations has become crucial in recent years. 

Actual scientific researches and issues analysis.  Various approaches have 

been proposed to solve this issue. Oliver [1] proposed artificial neural network, which 

consists of three parts and allows to generate considerably larger simulations.  Yang 

etc. [2] use a neural network to solve the Poisson equation in order to accelerate 

Eulerian fluid simulations. Guo et.al [3] proposed a general and flexible approximation 

model for real-time prediction of non-uniform steady laminar flow in a 2D or 3D 

domain based on convolutional neural networks (CNNs).   

The research objective.  The purpose of this paper is to investigate the 

application various types of artificial neural networks to fluid flow simulation and 

compare those applications by following metrics: accuracy, performance, scalability, 

applicability for other fields of physics. 

The statement of basic materials.  The common formulation of the task of the 

simulation of physical processes is the process of mathematical modelling, performed 

on a computer, which is designed to predict the behavior of or the outcome of a real 

physical process. If process can be described by differential equations, simulation 

performs by sequential numerical solving of the set of partial differential equations. 

The novel approach by using machine learning replace explicit numerical solving on 

trained model, which converts previous state of simulation into next. 

This section describes three different artificial networks which can be applied to 

fluid flow problems. 
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1) Convolutional neural network for   CFD simulations 

This approach was proposed by Guo et.al [3]. It predicts non-uniform steady 

laminar flow in a 2D or 3D domain on given boundary conditions. 

 It consists of three key components: adopted signed distance functions (SDF) 

as a flexible and general geometric representation for convolutional neural networks; 

multiple convolutional encoding layers for extracting abstract and high-level 

geometric representations; multiple convolutional decoding layers that map the 

abstract geometric representations into the computational fluid dynamics velocity 

field.  

Fig. 1 shows general structure of proposed model which was presented in [3]. 

Main advantage of this approach is that CNN prediction of non-uniform steady 

laminar flow is considerably faster than traditional LBM [4] solvers. The authors 

speedup results show that GPU accelerated CNN model achieves up to 12K speedup 

compared to traditional LBM solvers running on a single CPU core, the CNN model 

achieves up to 292 speedups compared to GPU-accelerated 

LBM solver.   

Fig. 2 shows examples of visualization of two-dimensional prediction results 

that were first considered in [3] First column demonstrates simulation results of 

traditional LBM solver as a ground truth, second column shows the magnitude of the 

CNN prediction, third - error magnitude. 

 
Fig. 1. CNN based CFD surrogate model architecture   
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Fig. 2. Prediction visualization 

 
2) Lat-Net  

This artificial neural network architecture, Lat-Net, was proposed by Hennigh 

[1]. It decreases both the computation time and memory usage of Lattice Boltzmann 

flow simulations. As the author says, that once Lat-Net is trained, model can 

generalize different grid sizes and various geometries while maintaining accuracy.   

Fig. 3 shows the general structure of the Lat-Net architecture and the simulation 

process first proposed and described in [1]. Simulation process starts by conducting 

tensor   , which represents flow state, with shape          for the 2D case and 

              for the 3D case, and tensor  , which represents boundaries, with shape 

         or            .If the cell is solid, value is 1, and 0 otherwise. Two 

separate networks,     and     
 compresses    and   respectively into tensors   , 

    and     with equal shapes. After that, model applies the compressed boundary to 

the compressed state every time-step in following way: 

                   

Next network      emulates the dynamics:        . In the end, decoder 

network     generates simulation state.  

According to the results presented by the author, Lat-Net achieved 3.4x 

efficiency gain in working memory usage, and about 9x speed increase, in comparison 

of traditional LBM solver. 

Also, that method can be applied to electromagnetic simulations, that shows 

generality of such approach. For example, fig 4 from [1] demonstrates predicted values 

for different grid sizes. We can see that the authors of the work were able to obtain 

results that closely resemble real physical processes  
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Fig. 3. Structure of the Lat-Net simulation process 

3) Data-driven projection method 

The projection step is most time-consuming step in numerical calculation to 

solve Navier – Stokes equations in the grid-based simulations. 

Yang et.al [2] proposed a novel data-driven projection method using an 

artificial neural network for solving the Poisson equation in the projection step. Fig. 5 

demonstrates some steps data-driven projection method in grid-based fluid simulation 

framework. These steps are described in detail in [2]. 

The author defines  as the box                                    , each 

grid at position         ;  is the matrix of the pointwise property  per grid:            

              . The function     represents the boundary condition,       - pressure 

in grid at frame  ,      - velocity in grid at frame  .     [5] function is regarded as 

projection step in the solving process. Then, pressure values in the grid at the next frame is: 

                                    

According to previous equation, a feature vector was defined: 
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Fig. 4. Visualization of the Lat-Net prediction 

Trained artificial neural network receives this vector as input data, and predicts 

pressure   after projection step. neural network has 20 input neurons (including the 

bias neuron) in input layer. And the sole neuron in the output layer is the pressure in 

the next frame. 

Fig. 6 shows visualization of simulation results of both data-driven method and 

PCG in different grid resolutions. These results were summarized in [2]. 

According to the results presented by the author, method obtained 4.4x speedup 

in comparison of PCG method at resolution         , and 14.9x speedup at 

resolution            . 

4) Comparison of current approaches from this review 

In order to compare mentioned methods, Table 1 shows main features of each 

method. These features are following: ability to simulate in 2D and 3D space, type of 

neural network (convolutional or shallow), replaced method (LBM or PCG), value of 

method‘s speedup, ability to simulate steady and non-steady flow and ability to be 

applied in problems of simulation of processes from other fields of physics. 
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Fig. 5. Framework of data-driven projection method 

 

Fig. 6. Visualization of PCG and data-driven projection method 

Table 1 

Comparison of methods 

Feature 
CONVOLUTIONAL NEURAL 

NETWORK SURROGATE 
MODELS FOR CFD 

Lat-Net 
Data-driven 
projection 

method 

2D + + - 

3D + + + 

Type of NN Convolutional Convolutional Shallow 

Replaced method LBM LBM PCG 

Speedup 12K(CPU), 292(GPU) 9 4.4-14.9 

Ability to simulate 
steady flow 

+ + - 

Ability to simulate 
non-steady flow 

- + + 

Can be applicable for 
other fields of 

physics 
- + - 
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Conclusions. The paper has demonstrated and compared novel machine learning 

methods for fluid flow simulation problem, which achieved crucial decreasing in computation 

time and memory usage in comparison of traditional methods - LBM and PCG. 

Also, one of them, Lat-Net considers by us as promising, in order to it 

scalability, performance, ability to be applied in both 2D and 3D cases and even 

possibility to be applied in another field of physics, like electromagnetism. Lat-Net 

provides wide range of possibilities design exploration and optimization.   
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