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Relevance of the research topic. Area of research that deals with 

heterogeneous computing is currently underdeveloped. In machine learning, for 

example, huge effort goes into creating algorithms that are more efficient and getting 

more performance from GPUs, which leads to restricting CPU usage only to OS 

maintenance tasks such as scheduling for example. Despite that, most supercomputers 

and large data centers use systems that have both CPUs and GPUs [1]. General-

purpose computing on GPU (GPGPU) has paved the road for PC users to experiment 

and work on projects that involve GPUs to outsource laborious tasks. CUDA, OpenCL 

are two examples of libraries that allow that [2, 11].  

Another point to consider is recent developments in the CPU market, where 4 

core CPUs have become standard, some 15 years from dual-core CPU introduction to 

the market, with enterprise or server level CPUs sporting up to 64 cores, which is 

reaching the recommended theoretical limit of SMP architecture. This in turn creates 

additional cost-efficient ways of getting CPU power.  

There is also an increasing demand for neural network use in many practical 

spheres, as many large companies are developing intelligent systems that work directly 

with Big Data solutions. This is due to meeting two of the most important demands for 

effective neural network use: quality of the data and an increasing amount of compute 

power. Success in the last decade in neural network use has been dubbed Renaissance. 

This success is further fueled by the wide availability of cheap and performant CPUs, 

GPUs, and open source solutions to directly interact with them. 

Target setting. Neural networks, as a way to find solutions to practical 

problems, are becoming more widespread each day. With this growth comes the 

demand for high-performance computer systems.   

Actual scientific researches and issues analysis. Many studies explore how to 

work with GPUs, what are the best practices, how to create revise CPU algorithms to 

work on GPU [5]. CPUs are also very much explored. However, as stated earlier, 

heterogeneous systems are not as thoroughly examined and there are some articles on 

how to work with them, but the area is still not well understood. 

Articles that deal with heterogeneous systems show promising results [1, 2, 4]. 

Heterogeneous CPU-GPU systems, although, underexplored, have shown to accelerate 

tasks related to machine learning, image processing, and Big Data tasks [1, 2]. 
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Uninvestigated parts of general matters defining. Python is a popular 

programming language and part of its fame comes from machine learning libraries, 

such as Tensorflow, Scikit, etc. Most of such libraries put effort into the optimization 

of their workload around the GPU and Tensorflow goes a step further and finds ways 

to run better on TPUs. This approach is more reasonable in PaaS cloud solutions that 

usually provide end-users with high-performance GPU and modestly performing, low 

latency CPUs, or virtualize a powerful CPU into several virtual CPUs. Most other 

cases, including PaaS solutions that provide access to high-performance CPU and 

GPU, usually do not benefit from this union [3]. 

The research objective. The goal of this article is to determine if it is feasible 

to use heterogeneous systems for neural network tasks. To achieve this goal, a set of 

experiments will be conducted that involves timing each subtask and based on that, 

determine the speedup of each system. 

The statement of basic materials. Before looking too deep into the problem, 

first, we need to understand what hardware we are dealing with. All of the experiments 

are run on NVidia GPUs. Architecturally, GPUs are quite different from CPUs. While 

‗casual‘ customers focus on simple metrics – memory, memory frequency, processor 

frequency, professional customers are more interested in what goes into such devices. 

There is much more to it. For example, let us take TU102, used in RTX 2080Ti 

mainstream GPU and Quadro RTX 6000 professional counterpart. This model is used 

as an example because each contemporary model of GPU derives for this design. 

TU102 subdivides into 6 graphics processing clusters, 36 texture processing clusters, 

and 72 streaming multiprocessors (SM). Each SM consists of 64 CUDA cores, 8 

Tensor cores, 256 KB register file, 4 Texture units, and 96 KB of shared memory. On 

top of that, each core has access to 6144 KB of L2 cache. To add to the complexity of 

this design, SM‘s cores are divided depending on their use, so instead of saying CUDA 

cores, a more appropriate way to address them is by what type of data they compute. 

There are 64 FP32 Cores and 64 INT32 cores. Therefore, GPU is a very specialized 

device, which makes use of hardware acceleration [6]. 

With architecture in mind, NVidia has created a specialized software solution to 

access GPU potential called CUDA (Compute Unified Device Architecture). CUDA 

lets developers use NVidia GPUs for GPGPU tasks. CUDA platform gives access to a 

set of instructions, commands, and parallel programming tools to successfully develop 

and run compute kernels. Compute kernel is a routine, compiled for hardware 

accelerators, in our case, GPUs. CUDA is widely used across different libraries, 

though, officially, its only supported languages are C and C++ [10, 11]. 

As stated before, this article's goal is to find out whether it is feasible and 

quantify how well it runs for neural network tasks, and the most popular language for 

data science, data engineering, and machine learning engineering is Python. Numba 
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for Python is a library that gives access to JIT-compiler that can compile Python code 

into compute kernels [11]. 

Testing is performed on the following computer systems: 

1. AMD Ryzen 9 3900X 12 cores, 24 threads, 3.8 GHz base clock, 4.1 GHz 

boost clock, RTX 2060, 16GB of RAM, X570 chipset. 

2. AMD Ryzen 5 2400G 4 cores, 8 threads, 3.6 GHz base clock, 3.8 GHz boost 

clock, GTX 1060-3 GB, 16 GB of RAM, A320 chipset. 

3. AMD Athlon 760K 4 cores, 4 threads, 3.8 GHz base clock, 4.1 GHz boost 

clock, GTS 450, 4 GB of RAM, X89 chipset. 

4. Intel Core i5-7200U 2 cores, 4 threads, 2.5 GHz base clock, 3.1 GHz boost 

clock, Geforce 940MX, 8 GB of RAM, KBU chipset. 

5. Intel Xeon E5-2630 2 cores, 2 threads, 2.3 GHz base clock, 2.8 GHz boost 

clock, Tesla K80, 8 GB of RAM, C604 chipset. 

To do experiments with said systems, a simple planning solution is required. To 

put it simply, we need to split the job between CPU and GPU. When dealing with the 

CPU-GPU system, you have to understand that execution time on GPU is not 

something that can be predicted. Before we do experiments, we need to measure how 

much time it takes for CPU and GPU to finish the task and to see how much time it 

takes to send the data back from GPU.  

The task itself involves some of the steps that the neural network model takes 

while learning. These steps are normalization, weighing, activation.  

Normalization is a function that fits the initial values to a common scale, in our 

case, ranging from 0 to 1. This is not unlike database normalization procedure and 

different neural networks developed for other scenarios will use different 

normalization techniques, depending on the input data. 

Weighing is a process of applying a weight parameter to input data by 

multiplication. Weight is a coefficient that is constantly changing in neural networks 

during learning. It defines how the feature of the node this weight represents 

influences the desired outcome. 

Activation uses a special activation function that defines output. There are many 

different activation functions, for this case, we will be using the hyperbolic tangent 

function, defined by the following formula: 

             
        

        
                                        (1) 

The following graphs (Fig.1-3) show execution times on GPU and CPU as well 

as GPU to CPU send times. 

Using the time measurements, we create a simple regression model using least 

squares method. However, before that, step one is to make an initial split using the 
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following formula (2): 

                                                               (2) 

  

Fig. 1. Compute times on CPU 

 

 
 

Fig. 2. Compute times on GPU 

 

  

Fig. 3. Send times from GPU to CPU 
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Where N is task dimension and Wgpu stands for computation weight. To 

compute computation weight, the following formula is used: 

     
    

          
                                               (3) 

Where tgpu is execution time on GPU, tcpu is execution time on CPU and Wgpu is 

weight of GPU computations. 

Step two is to take the regression model and find the value for Ngpu and Ncpu 

computed in step one. This way we get a new pair of time predictions, with which we 

make a new split. This step is repeated 10 times to get a more ‗fair‘ split. 

After the job has been split, we get the following results (Table 1): 

Table 1 

Job split between the GPU and CPU 

Dimension GPU CPU 

R9 3900X + RTX 2060 

5000000 2098724 2901276 

10000000 4302225 5697775 

25000000 10783998 14216002 

50000000 21500424 28499576 

R5 2400G + GTX 1060-3GB 

5000000 1897180 3102820 

10000000 3319339 6680661 

25000000 9503751 15496249 

50000000 18664993 31335007 

Dimension GPU CPU 

I5 7200U + Geforce 940MX 

5000000 1708896 3291104 

10000000 3308685 6691315 

Ended Table 1 

Dimension GPU CPU 

25000000 7836838 17163162 

50000000 15244193 34755807 

Xeon E5-2630(2C) + Tesla K80 

5000000 2112889 2887111 

10000000 6198501 3801499 

25000000 16353979 8646021 

50000000 33230526 16769474 

Dimension GPU CPU 

Athlon X4 760k + GTS 450 

5000000 3301774 1698226 

10000000 6930421 3069579 

25000000 17943324 7056676 

50000000 36351454 13648546 
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To quantify the speedups, we introduce two coefficients: speedup coefficient 

relative to CPU and speedup coefficient relative to GPU, since we are exploring a 

heterogeneous system, CPU and GPU perform differently. To calculate the speedup 

coefficient relative to CPU, we use the following formula: 

    
     

  

 

Where Tg is time to finish the task on the GPU, Ts is time to send the data from 

the GPU to the CPU, and Th is time to finish the task on a heterogeneous system. 

To calculate the speedup coefficient relative to GPU, we use the next formula: 

    
  

  

 

Where Tc is time to finish the task on the CPU and Th is time to finish the task 

on a heterogeneous system. 

To get these results, the program has been launched 100-1000 times, depending 

on how deviant results are. Results are an average of 100-1000 time measurements 

made during execution. 

Conclusion. This article studied opportunities to accelerate neural network 

subtasks like normalization, weighing, and activation using combined compute 

potential of CPU and GPU running in parallel. Results show that the heterogeneous 

approach is effective in neural network tasks. Applying this approach significantly 

reduced the overall execution time.  

From the results, we can infer that the program is taking advantage of the new 

CPUs and performance speedups relative to GPU range from 1.11 to 4.39 (Table 2) 

and performance speedups relative to CPU range from 0.96 to 3.48 (Table 3) show that 

in most cases, the CPU performance can be enhanced if GPU is also utilized (Fig. 4).  

In some runs, the CPU-only approach shows better results as the coefficient 

sometimes goes below 1 and reaches 0.96 (Fig. 4), however, for most experiments that is 

not the case. This may take place due to how much time it takes for the GPU to send back to 

the CPU all of the computed data. Data transfer alone takes 40-60% of the time. Referring 

back to the graphs shows that even a single floating-point number can take up to 6 

milliseconds for GPU to handle, due to the synchronous nature of the GPU design. 

Table 2 

Speedup coefficient relative to the GPU 

System 5000000 1000000 25000000 5000000 

R9 3900X + RTX 2060 1.73 2.01 2.18 2.36 

R5 2400G + GTX 1060-3GB 1.8 2.14 2.59 2.77 

I5-7200U + Geforce 940MX 2.94 3.66 4.06 4.39 

Athlon X4 760k + GTS 450 1.16 1.25 1.25 1.26 

Xeon E5-2630 (2C) + Tesla K80 1.11 2.82 2.71 3.01 
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Table 3 

Speedup coefficient relative to the CPU 

System 5000000 1000000 25000000 5000000 

R9 3900X + RTX 2060 1.12 1.39 1.58 1.73 

R5 2400G + GTX 1060-3GB 0.96 1.1 1.43 1.55 

I5-7200U + Geforce 940MX 0.99 1.51 1.66 1.81 

Athlon X4 760k + GTS 450 3.17 3.28 3.43 3.48 

Xeon E5-2630 (2C) + Tesla K80 1.59 1.72 2.61 2.81 

 

  

 

Fig. 4. Speedup coefficients on heterogeneous system 
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