

Andrii Antoniuk, Volodymyr Rusinov.

ACCELERATION OF NEURAL NETWORK TASKS

ON HETEROGENEOUS CPU-GPU SYSTEMS

The article analyzes the issue of heterogeneous CPU-GPU system use in

accelerating applied tasks, related to the neural network learning process.

Keywords: heterogeneous systems, neural networks, machine learning, CPU, GPU.

Fig.: 4. Tab.: 3. Bibl.: 11.

Relevance of the research topic. Area of research that deals with

heterogeneous computing is currently underdeveloped. In machine learning, for

example, huge effort goes into creating algorithms that are more efficient and getting

more performance from GPUs, which leads to restricting CPU usage only to OS

maintenance tasks such as scheduling for example. Despite that, most supercomputers

and large data centers use systems that have both CPUs and GPUs [1]. General-

purpose computing on GPU (GPGPU) has paved the road for PC users to experiment

and work on projects that involve GPUs to outsource laborious tasks. CUDA, OpenCL

are two examples of libraries that allow that [2, 11].

Another point to consider is recent developments in the CPU market, where 4

core CPUs have become standard, some 15 years from dual-core CPU introduction to

the market, with enterprise or server level CPUs sporting up to 64 cores, which is

reaching the recommended theoretical limit of SMP architecture. This in turn creates

additional cost-efficient ways of getting CPU power.

There is also an increasing demand for neural network use in many practical

spheres, as many large companies are developing intelligent systems that work directly

with Big Data solutions. This is due to meeting two of the most important demands for

effective neural network use: quality of the data and an increasing amount of compute

power. Success in the last decade in neural network use has been dubbed Renaissance.

This success is further fueled by the wide availability of cheap and performant CPUs,

GPUs, and open source solutions to directly interact with them.

Target setting. Neural networks, as a way to find solutions to practical

problems, are becoming more widespread each day. With this growth comes the

demand for high-performance computer systems.

Actual scientific researches and issues analysis. Many studies explore how to

work with GPUs, what are the best practices, how to create revise CPU algorithms to

work on GPU [5]. CPUs are also very much explored. However, as stated earlier,

heterogeneous systems are not as thoroughly examined and there are some articles on

how to work with them, but the area is still not well understood.

Articles that deal with heterogeneous systems show promising results [1, 2, 4].

Heterogeneous CPU-GPU systems, although, underexplored, have shown to accelerate

tasks related to machine learning, image processing, and Big Data tasks [1, 2].

ICSFTI2020 157Section 3. AI

Uninvestigated parts of general matters defining. Python is a popular

programming language and part of its fame comes from machine learning libraries,

such as Tensorflow, Scikit, etc. Most of such libraries put effort into the optimization

of their workload around the GPU and Tensorflow goes a step further and finds ways

to run better on TPUs. This approach is more reasonable in PaaS cloud solutions that

usually provide end-users with high-performance GPU and modestly performing, low

latency CPUs, or virtualize a powerful CPU into several virtual CPUs. Most other

cases, including PaaS solutions that provide access to high-performance CPU and

GPU, usually do not benefit from this union [3].

The research objective. The goal of this article is to determine if it is feasible

to use heterogeneous systems for neural network tasks. To achieve this goal, a set of

experiments will be conducted that involves timing each subtask and based on that,

determine the speedup of each system.

The statement of basic materials. Before looking too deep into the problem,

first, we need to understand what hardware we are dealing with. All of the experiments

are run on NVidia GPUs. Architecturally, GPUs are quite different from CPUs. While

‗casual‘ customers focus on simple metrics – memory, memory frequency, processor

frequency, professional customers are more interested in what goes into such devices.

There is much more to it. For example, let us take TU102, used in RTX 2080Ti

mainstream GPU and Quadro RTX 6000 professional counterpart. This model is used

as an example because each contemporary model of GPU derives for this design.

TU102 subdivides into 6 graphics processing clusters, 36 texture processing clusters,

and 72 streaming multiprocessors (SM). Each SM consists of 64 CUDA cores, 8

Tensor cores, 256 KB register file, 4 Texture units, and 96 KB of shared memory. On

top of that, each core has access to 6144 KB of L2 cache. To add to the complexity of

this design, SM‘s cores are divided depending on their use, so instead of saying CUDA

cores, a more appropriate way to address them is by what type of data they compute.

There are 64 FP32 Cores and 64 INT32 cores. Therefore, GPU is a very specialized

device, which makes use of hardware acceleration [6].

With architecture in mind, NVidia has created a specialized software solution to

access GPU potential called CUDA (Compute Unified Device Architecture). CUDA

lets developers use NVidia GPUs for GPGPU tasks. CUDA platform gives access to a

set of instructions, commands, and parallel programming tools to successfully develop

and run compute kernels. Compute kernel is a routine, compiled for hardware

accelerators, in our case, GPUs. CUDA is widely used across different libraries,

though, officially, its only supported languages are C and C++ [10, 11].

As stated before, this article's goal is to find out whether it is feasible and

quantify how well it runs for neural network tasks, and the most popular language for

data science, data engineering, and machine learning engineering is Python. Numba

ICSFTI2020158 Section 3. AI

for Python is a library that gives access to JIT-compiler that can compile Python code

into compute kernels [11].

Testing is performed on the following computer systems:

1. AMD Ryzen 9 3900X 12 cores, 24 threads, 3.8 GHz base clock, 4.1 GHz

boost clock, RTX 2060, 16GB of RAM, X570 chipset.

2. AMD Ryzen 5 2400G 4 cores, 8 threads, 3.6 GHz base clock, 3.8 GHz boost

clock, GTX 1060-3 GB, 16 GB of RAM, A320 chipset.

3. AMD Athlon 760K 4 cores, 4 threads, 3.8 GHz base clock, 4.1 GHz boost

clock, GTS 450, 4 GB of RAM, X89 chipset.

4. Intel Core i5-7200U 2 cores, 4 threads, 2.5 GHz base clock, 3.1 GHz boost

clock, Geforce 940MX, 8 GB of RAM, KBU chipset.

5. Intel Xeon E5-2630 2 cores, 2 threads, 2.3 GHz base clock, 2.8 GHz boost

clock, Tesla K80, 8 GB of RAM, C604 chipset.

To do experiments with said systems, a simple planning solution is required. To

put it simply, we need to split the job between CPU and GPU. When dealing with the

CPU-GPU system, you have to understand that execution time on GPU is not

something that can be predicted. Before we do experiments, we need to measure how

much time it takes for CPU and GPU to finish the task and to see how much time it

takes to send the data back from GPU.

The task itself involves some of the steps that the neural network model takes

while learning. These steps are normalization, weighing, activation.

Normalization is a function that fits the initial values to a common scale, in our

case, ranging from 0 to 1. This is not unlike database normalization procedure and

different neural networks developed for other scenarios will use different

normalization techniques, depending on the input data.

Weighing is a process of applying a weight parameter to input data by

multiplication. Weight is a coefficient that is constantly changing in neural networks

during learning. It defines how the feature of the node this weight represents

influences the desired outcome.

Activation uses a special activation function that defines output. There are many

different activation functions, for this case, we will be using the hyperbolic tangent

function, defined by the following formula:

 (1)

The following graphs (Fig.1-3) show execution times on GPU and CPU as well

as GPU to CPU send times.

Using the time measurements, we create a simple regression model using least

squares method. However, before that, step one is to make an initial split using the

ICSFTI2020 159Section 3. AI

following formula (2):

 (2)

Fig. 1. Compute times on CPU

Fig. 2. Compute times on GPU

Fig. 3. Send times from GPU to CPU

ICSFTI2020160 Section 3. AI

Where N is task dimension and Wgpu stands for computation weight. To

compute computation weight, the following formula is used:

 (3)

Where tgpu is execution time on GPU, tcpu is execution time on CPU and Wgpu is

weight of GPU computations.

Step two is to take the regression model and find the value for Ngpu and Ncpu

computed in step one. This way we get a new pair of time predictions, with which we

make a new split. This step is repeated 10 times to get a more ‗fair‘ split.

After the job has been split, we get the following results (Table 1):

Table 1

Job split between the GPU and CPU

Dimension GPU CPU

R9 3900X + RTX 2060

5000000 2098724 2901276

10000000 4302225 5697775

25000000 10783998 14216002

50000000 21500424 28499576

R5 2400G + GTX 1060-3GB

5000000 1897180 3102820

10000000 3319339 6680661

25000000 9503751 15496249

50000000 18664993 31335007

Dimension GPU CPU

I5 7200U + Geforce 940MX

5000000 1708896 3291104

10000000 3308685 6691315

Ended Table 1

Dimension GPU CPU

25000000 7836838 17163162

50000000 15244193 34755807

Xeon E5-2630(2C) + Tesla K80

5000000 2112889 2887111

10000000 6198501 3801499

25000000 16353979 8646021

50000000 33230526 16769474

Dimension GPU CPU

Athlon X4 760k + GTS 450

5000000 3301774 1698226

10000000 6930421 3069579

25000000 17943324 7056676

50000000 36351454 13648546

ICSFTI2020 161Section 3. AI

To quantify the speedups, we introduce two coefficients: speedup coefficient

relative to CPU and speedup coefficient relative to GPU, since we are exploring a

heterogeneous system, CPU and GPU perform differently. To calculate the speedup

coefficient relative to CPU, we use the following formula:

Where Tg is time to finish the task on the GPU, Ts is time to send the data from

the GPU to the CPU, and Th is time to finish the task on a heterogeneous system.

To calculate the speedup coefficient relative to GPU, we use the next formula:

Where Tc is time to finish the task on the CPU and Th is time to finish the task

on a heterogeneous system.

To get these results, the program has been launched 100-1000 times, depending

on how deviant results are. Results are an average of 100-1000 time measurements

made during execution.

Conclusion. This article studied opportunities to accelerate neural network

subtasks like normalization, weighing, and activation using combined compute

potential of CPU and GPU running in parallel. Results show that the heterogeneous

approach is effective in neural network tasks. Applying this approach significantly

reduced the overall execution time.

From the results, we can infer that the program is taking advantage of the new

CPUs and performance speedups relative to GPU range from 1.11 to 4.39 (Table 2)

and performance speedups relative to CPU range from 0.96 to 3.48 (Table 3) show that

in most cases, the CPU performance can be enhanced if GPU is also utilized (Fig. 4).

In some runs, the CPU-only approach shows better results as the coefficient

sometimes goes below 1 and reaches 0.96 (Fig. 4), however, for most experiments that is

not the case. This may take place due to how much time it takes for the GPU to send back to

the CPU all of the computed data. Data transfer alone takes 40-60% of the time. Referring

back to the graphs shows that even a single floating-point number can take up to 6

milliseconds for GPU to handle, due to the synchronous nature of the GPU design.

Table 2

Speedup coefficient relative to the GPU

System 5000000 1000000 25000000 5000000

R9 3900X + RTX 2060 1.73 2.01 2.18 2.36

R5 2400G + GTX 1060-3GB 1.8 2.14 2.59 2.77

I5-7200U + Geforce 940MX 2.94 3.66 4.06 4.39

Athlon X4 760k + GTS 450 1.16 1.25 1.25 1.26

Xeon E5-2630 (2C) + Tesla K80 1.11 2.82 2.71 3.01

ICSFTI2020162 Section 3. AI

Table 3

Speedup coefficient relative to the CPU

System 5000000 1000000 25000000 5000000

R9 3900X + RTX 2060 1.12 1.39 1.58 1.73

R5 2400G + GTX 1060-3GB 0.96 1.1 1.43 1.55

I5-7200U + Geforce 940MX 0.99 1.51 1.66 1.81

Athlon X4 760k + GTS 450 3.17 3.28 3.43 3.48

Xeon E5-2630 (2C) + Tesla K80 1.59 1.72 2.61 2.81

Fig. 4. Speedup coefficients on heterogeneous system

References

1. Chen, Tianqi & Li, Mu & Li, Yutian & Lin, Min & Wang, Naiyan &

Wang, Minjie & Xiao, Tianjun & Xu, Bing & Zhang, Chiyuan & Zhang, Zheng.

(2015). MXNet: A Flexible and Efficient Machine Learning Library for

Heterogeneous Distributed Systems.

2. J. E. Stone, D. Gohara and G. Shi, "OpenCL: A Parallel Programming

Standard for Heterogeneous Computing Systems," in Computing in Science &

Engineering, vol. 12, no. 3, pp. 66-73, May-June 2010, doi: 10.1109/MCSE.2010.69.

3. E. Nurvitadhi, Jaewoong Sim, D. Sheffield, A. Mishra, S. Krishnan and D.

Marr, "Accelerating recurrent neural networks in analytics servers: Comparison of

FPGA, CPU, GPU, and ASIC," 2016 26th International Conference on Field

Programmable Logic and Applications (FPL), Lausanne, 2016, pp. 1-4, doi:

10.1109/FPL.2016.7577314.

4. Van Werkhoven, Ben & Maassen, Jason & Seinstra, Frank & Bal, Henri.

(2014). Performance models for CPU-GPU data transfers. Proceedings - 14th

ICSFTI2020 163Section 3. AI

IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing,

CCGrid 2014. 10.1109/CCGrid.2014.16.

5. Y. Kim, P. Mercati, A. More, E. Shriver and T. Rosing, "P4: Phase-based

power/performance prediction of heterogeneous systems via neural networks," 2017

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Irvine,

CA, 2017, pp. 683-690, doi: 10.1109/ICCAD.2017.8203843.

6. GPU-Accelerated Applications [Електронний ресурс]. – Режим

доступу: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-

Center/tesla-product-literature/gpu-applications-catalog.pdf

7. NVidia Turing GPU Architecture [Електронний ресурс]. – Режим доступу:

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/

turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

8. Yang, Canqun & Wang, Feng & Du, Yunfei & Chen, Juan & Liu, Jie & Yi,

Huizhan & Lu, Kai. (2010). Adaptive Optimization for Petascale Heterogeneous

CPU/GPU Computing. Proceedings - IEEE International Conference on Cluster

Computing, ICCC. 19-28. 10.1109/CLUSTER.2010.12.

9. J. Hestness, S. W. Keckler and D. A. Wood, "GPU Computing Pipeline

Inefficiencies and Optimization Opportunities in Heterogeneous CPU-GPU

Processors," 2015 IEEE International Symposium on Workload Characterization,

Atlanta, GA, 2015, pp. 87-97.

10. Soyata, T., 2018. GPU Parallel Program Development Using CUDA. New

York: CRC Press.

11. CUDA Refresher: Reviewing the Origins of GPU Computing [Електронний

ресурс]. – Режим доступу: https://www.nvidia.com/content/dam/en-zz/Solutions/

design-visualization/technologies/turing-architecture/NVIDIA-Turing-

Architecture-Whitepaper.pdf

AUTHORS

Volodymyr Rusinov – student, Department of Computer Engineering, National

Technical University of Ukraine ―Igor Sikorsky Kyiv Polytechnic Institute‖.

E-mail: VRusinovIO51@office365.fiot.kpi.ua

Andrii Antoniuk (supervisor) – associate professor, PHd, Department of

Computer Engineering, National Technical University of Ukraine ―Igor Sikorsky Kyiv

Polytechnic Institute‖.

E-mail: ant5298g@gmail.com

ICSFTI2020164 Section 3. AI

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/
https://www.nvidia.com/content/dam/en-zz/Solutions/%20design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/%20design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/%20design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
mailto:ant5298g@gmail.com

