
UDC 378.1
Victor Porev

PATTERN OF OWNEDRAW GUI FOR MULTI-MODE SOFTWARE
APPLICATIONS

The article considers some aspects of building graphical interfaces with
non-standard elements for multi-mode software applications. The onDraw-onTouch
pattern is proposed and analyzed.

Key words: application, GUI, multi-mode, pattern.
Fig.: 5. Bibl.: 6.

Relevance of the research topic. Design patterns play an important role in
software engineering by providing sample solutions for a particular class of software
applications.

Formulation of the problem. A convenient and adequate graphical user
interface (GUI) is a necessary component for a wide list of different software
applications. This is especially true for multimode applications, such as those that
provide extensive functionality for entering, editing, and displaying information.
Multimode of such applications can be thought of as the ability to transition from one
state to another, with context-sensitive graphical controls for each state. Application
development environments typically provide programmers with some set of standard
controls. Such standard elements are supported by corresponding API classes and
functions. But if a developer wants to diversify the user interface by adding his own
custom controls, he has to write a lot of code himself. This can be simplified by
describing typical structures in the form of an architectural pattern. The pattern largely
unifies the solution, which makes it easier to build assets and ensure their reuse.

Analysis of recent research and publications. The first significant advance in
the classification of patterns is the Design Patterns book [1]. Since then, more than 2
decades have passed, but the relevance of patterns does not decrease, as they make it
easier for programmers to implement effective architectural solutions that have
already been developed.

An important step in the development of the science of patterns was the work of
Martin Fowler, in particular, the description of the dependency injection pattern [2].
Dependency injection makes it easier to design software systems with extensibility, in
particular, with a developed graphical user interface.

In general, an event-driven approach is mainly used for GUI implementation.
This approach was described as an Observer pattern in the Design Patterns book.
Subsequently, the technology of interaction between system elements, such as
message exchange or event processing, was designated as callback. For example, as in
the Windows message system [3]. In some systems, the term ‘listener’ is used to
denote such mechanisms [4].



Some examples of implementation of non-standard GUI elements in the form of
software libraries are known [5, 6].

Uninvestigated parts of general matters defining. In the opinion of the author,
there is a need for some generalization of the approach to the design of non-standard
graphical user interfaces. Such a generalization should be made in the form of
appropriate pattern design.

The research objective. The purpose of the research is to find some unified
template - a pattern for describing the construction of event-driven architecture,
focused on the active use of graphic and sensor capabilities of modern systems.

Presentation of the main material. Proposed pattern structure. The figure
below shows the simplified class diagram of the onDraw-onTouch pattern.

Fig.1. Pattern onDraw–onTouch

Classes of the WorkMode hierarchy describe the states (modes of operation) of
the program. The base class may or may not be abstract - it may have default member
definitions, such as for the start state of the program. The WorkModeConcrete classes
describe the states in each specific work mode.



Fig. 2. State transitions in a multi-mode application such as an editor

Thus, it can be imagined that in order to switch to some mode, for example,
WorkMode2, it is necessary to create an appropriate state object

WorkMode wm = new WorkMode0 //start from some initial state
. . .
wm = new WorkMode2
wm.init()
wm.refresh()

During the initialization of an object of the WorkModeConcrete class (in this
example, it is WorkMode2), objects of the MyOnDrawConcrete and
MyOnTouchConcrete classes are created. It may be appropriate in some cases to use a
constructor instead of the init() method. This is at the discretion of the programmer.

Thus, each object of the WorkMode class creates and encapsulates objects of the
MyOnDraw and MyOnTouch classes. In this pattern, it is implicitly assumed that
access to objects of the MyOnDraw and MyOnTouch classes from the outside is
closed, although this is not necessary. Depending on the implementation platform, you
can provide for registering a touch event listener, for example, through the API of the
corresponding sensor. This is partially shown in the class diagram in the body of the
init() method.

One of the interface methods of the WorkMode class is the refreshView()
method, which calls the show() method of the MyOnDraw class. The show() method
displays two things: some background content plus images of active custom GUI
elements. As a general rule, active GUI elements should be in the foreground, so the
call to drawGUI elements() in the body of the show() method is written last.

Based on platform considerations, it is possible for an implementation to provide
a dependency of the MyOnTouch class on the MyOnDraw class. To do this, you can
pass a reference (pointer) to an object of the MyOnDraw class to an object of the



MyOnTouch class by calling the setRef(MyOnDraw) method. When might it be
needed? Imagine that each time you move the cursor, you need to redraw the image in
the window. Then, in the body of the onActionMove() method of the MyOnTouch
class, you should provide a call to the drawing method of an object of the MyOnDraw
class for example od.show().

Thus, for each specific state (mode of operation), the view of the application
window is described by the program code for implementing the drawContent(),
drawGUIelements() methods, and the logic for handling touch events is described in
the onActionDown(), onActionMove(), onActionUp() methods. This is the main
essence of this pattern. The list of touch event methods can be extended, for example,
to implement multitouch.

When implementing this pattern, it is necessary to provide for the consistency of
the display and touch coordinates of all active elements. To do this, you can provide
appropriate members in the MyOnDraw class, which would also be visible in the
MyOnTouch class.

Pattern onDraw-onTouch can be used to build ownerdraw GUIs for a variety of
applications for many operating systems and platforms.

Features of the implementation of the onDraw-onTouch pattern on the Microsoft
Windows platform. It is possible to choose several approaches for implementation.
The figure below shows an implementation of the onDraw-onTouch pattern based on
the Windows API.

Fig.3. Pattern onDraw–onTouch implementation for Windows API
You need to program a window callback function that calls the Windows

message handlers. In the WorkMode base class, you can define such methods as
message handlers:

onPaint() - WM_PAINT handler



onLBdown() - WM_LBUTTONDOWN handler
onMouseMove() - WM_MOUSEMOVE handler
onLBup() - WM_LBUTTONUP handler

The refreshView() method from the WorkMode class can be omitted, since the
InvalidateRect() Windows API function can be called directly instead.

Next, let's look at the features of the implementation of the onDraw-onTouch
pattern on the Android platform. To implement this, it is convenient to use the View
class from the Java and Kotlin Android API classes. In order to organize the display
of graphics, it is enough to override the onDraw() method of the View class in a
derived class. In our case, in the MyOnDraw class. And to access messages from the
touch sensor, the View class provides the onTouchListener interface with the
onTouch() method, which should be implemented in the user class, for example,
MyOnTouch.

Fig.4. Pattern onDraw–onTouch implementation for Android API

To redraw the contents of the window, you can call the invalidate() method of the
View class, which leads to a subsequent call to the onDraw() method of the
MyOnDraw class. To register the callback methods of the drawing and touch classes,
the setContentView() and setOnTouchListener() methods are used.

Below in Fig. 5 illustrates an example of the implementation of this pattern in the
Android application MyGIS created and developed by the author of this article.



Fig. 5. Examples of custom ownerdraw GUI elements based on the
onDraw-onTouch pattern in the MyGIS Android application

The main idea of the GUI is being implemented: What we see is what we can
touch.

Conclusions. The possibilities of generalizing the description of building user
interfaces for multimode applications based on the proposed onDraw-onTouch pattern
are considered. Using this pattern can reduce development costs in object-oriented
style applications with non-standard GUI elements.

References

1. Gamma E., Helm R., Johnson R., Vlissides J. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994, 395 p.

2. Martin Fowler. Inversion of Control Containers and the Dependency Injection
pattern - Forms of Dependency Injection. 23 January 2004.
URL: https://martinfowler.com/articles/injection.html

3. Microsoft. Windows Dev Center. URL:
https://developer.microsoft.com/en-us/windows/

4. Google. Documentation for app developers.
URL: https://developer.android.com/docs

5. Fully Skinned UI in wxWidgets (Trying to Emulate OwnerDraw) // wxWidgets
Discussion Forum. URL: https://forums.wxwidgets.org/viewtopic.php?t=42924

6. SEGGER. LISTVIEW - Custom (Sample)
URL: https://wiki.segger.com/LISTVIEW_-_Custom_(Sample)

AUTHORS



Victor Porev – associate professor, Department of Computer Engineering, National
Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.
E-mail: v_porev@ukr.net

EXTENDED SUMMARY

Victor Porev
PATTERN ONDRAW–ONTOUCH AND ITS USABILITY

FOR OWNERDRAW GUI

Relevance of research topic. Design patterns play an important role in software
engineering by providing decision patterns for a particular class of software
applications.

Formulation of the problem. A developed, convenient and adequate graphical
user interface is a necessary component for a large number of different software
applications. It is possible to simplify the creation of a non-standard GUI for
multimode applications by describing the typical constructions in the form of an
architectural pattern, which largely unifies the solution, which makes it easier to build
assets and ensure their reuse.

Analysis of recent research and publications. The first significant advance in
the classification of patterns is the Design Patterns book [1]. Since then, more than 2
decades have passed, but the relevance of patterns does not decrease, as they make it
easier for programmers to implement effective architectural solutions that have
already been developed.

Uninvestigated parts of general matters defining. There is a need for some
generalization of the approach to the design of non-standard graphical user interfaces.
Such a generalization should be made in the form of appropriate pattern design.

The research objective. The purpose of the research is to find some unified
template - a pattern for describing the construction of event-driven architecture,
focused on the active use of graphic and sensor capabilities of modern systems.

Presentation of the main material. Programs can work out different modes of
operation (states). Each mode is described by a class that is derived from some base
class. The onDraw-onTouch pattern is proposed, which describes the relationship
between the main display classes of GUI elements and event handlers related to user
interaction with these elements. Examples of implementation and use of such a
pattern are considered.

Conclusions. Possibilities of construction of the graphic user interface on the
basis of the offered pattern onDraw-onTouch are considered. This pattern describes a
simplified generalized approach to GUI implementation. Instead of combining



different API controls, each of which usually has significant features of
implementation in the program code, the pattern allows you to unify the construction
of program code for the GUI in an object-oriented style. This can reduce the cost of
developing programs.

Key words: GUI, pattern.


