V. V. RUSINOY, O. V. CHEREVATENKO, L. M. PUSTOVIT, O. M.
PUSTOVIT, A. VOLOKYTA

ISOEFFICIENT CALCULATION METHOD FOR DISCRETE FOURIER
TRANSFORM

The paper considers the issue of isoefficiency of MPP systems and
heterogeneous CPU-GPU systems on the problem discrete Fourier transform. The
development of parallel applications as its goal can have not only reduction of
execution time, but also provision of opportunities to solve problems of greater
dimensions. Feature parallelization of the algorithm includes the effective use of
hardware when increasing the dimensionality of the problem an important
characteristic of parallel computing.

Key words: isoefficiency, heterogeneous calculations, Fourier transform

Relevance of the research topic. The creation of iso-efficient systems allows
you to deploy a system for some task taking into account its efficiency. The efficiency
of parallel computing depends on the algorithm for implementing the task mapping
on the system. The purpose of this article is to consider the process of creating an
isoefficient system for solving practical problems using the Fourier transform as an
example, put the algorithm in the MPP system and use an empirical approach based
on machine learning to approximate the isoefficiency function for systems with
different architectural solutions.

The task that will be performed on a parallel and heterogeneous system is the
discrete Fourier transform algorithm. The discrete Fourier transform is used to solve
problems of spectral analysis - to study a signal through its division into a set of
signals. The nonlinear complexity of this algorithm is interesting from the point of
view of parallel processing.

The 1soefficiency function will be described based on the results of modeling
the problem on the considered systems. For a parallel MPP system, the result can be
obtained analytically. For a heterogencous CPU-GPU system, it is currently
impossible to obtain the isoefficiency function analytically, instead, an approach
using machine learning algorithms will be applied.

Actual scientific researches and issues analysis. There are a number of
scientific publications that study the subject of isoefficient systems based on the MPP
architecture [2, 3]. Methods of scaling parallel algorithms for solving certain applied
problems for their display on the MPP of a system with a given topological
organization are considered. The approach of creating iso-efficient systems allows
you to analyze the algorithm for its quality and parallelization capabilities on a given



topology and, as a result, the capabilities to scale the system with the expected
efficiency of the task.

Most modern supercomputers and large data centers use systems that have both
central processing units (CPUs) and graphics processing units (GPUs) on the nodes.
General Purpose GPU Computing (GPGPU) has opened the way for PC users to
experiment and work on projects that involve GPUs to handle labor-intensive tasks.
Heterogeneous systems based on CPU and GPU have been widely researched and are
quite a promising direction for the development of parallel computing. Despite the
proliferation of CPU-GPU-based systems, to date isoefficiency has not been
investigated with respect to heterogeneous systems.

The statement of basic materials. Isoefficient systems are systems with a
given efficiency of solving problems, which, being described in advance, is
constantly maintained. Let's consider the theoretical possibility of creating such
systems.

The formula for the efficiency of parallel processing on a parallel system is as
follows, determining the possibility of achieving the required efficiency of parallel
computing systems:

E= (D
By varying the parameters n, that is, the dimension of the problem, and N, the
number of processors, it is possible to achieve a linear increase in productivity with
an increase in the number of processors. This means that when performing
computational processes, it is possible to determine in advance the necessary

efficiency of their implementation [4].

The task completion time is predicted using "precedential" information - how
long has it taken for the task of the same type to be completed. A task scheduler is
created, which forms the initial result, which is simulated from the analysis of already
completed tasks, then the model is used to predict the time of completion of new
tasks. The scheduler analyzes the size of the data with which tasks work and their
execution time, and also takes into account the time of previous tasks of the same

type.

Using a similar deterministic correlation model, the execution time of a task of
the same type is predicted, where the input parameter is the size of its data.

The problem that will be simulated on the MPP system and the heterogeneous
CPU-GPU system is the Discrete Fourier Transform. The implementation of the
discrete Fourier transform (DFT), which is the basis of spectral analysis, is an
informal representation of signals, i.e. the investigated signals are represented by a
sequence of counts x(k) .



N—

1 .
Fp)= 3 x(e
k=0

(2)

2
- p—)p—)p; = -+ (3)

It can be seen from the formulas that the signal presentation intervals are equal
to 21T, which is the period of low frequencies. To increase the accuracy, it is necessary

to increase the interval T.

t-t ~kt=k; t = =7 4)

req

The DFT is a simple calculation procedure of the "matching" type, the estimate
of its complexity is: N2 + N. To implement it, you need to calculate the turning
coefticients of the DFT:

WZ" — g S (5)

These rotation coefficients are recorded in the ROM, that is, they are constants.

pk —jk v —j vk
WN =e =e (6)

In formula (4), Wilk (rotation coefficients) do not depend on T, but only on the

dimension of the transformation N, therefore they are not presented in exponential
form, but in trigonometric form

Wzk = COS C0S (%pk) - jsin(%pk) (7)
The rotation coefficients are repeated, for this reason, the changes in values are
described exactly to the specified values: p — up to (N-1), k — up to (N-1), with a
period of N(2 ). When taking out the sign of the coefficient, only half of the

coefficients can be stored. The real and imaginary parts of the coefficients are stored
separately in the ROM [6].

In its general form, the DFT can be represented as follows:

N-1

F0= 3 x(RW"" ®)



From such a formulaic definition, it is appropriate to present the DPF in the
form of a graph.

CUDA (Compute Unified Device Architecture) is a parallel computing
platform and API developed by Nvidia. It allows developers to use Nvidia graphics
cards for general computing. The CUDA platform provides the developer with direct
access to the system of video card commands and elements of parallel computing, for
the execution of computing kernels (compute kernel).

The computing core is the main working unit, with the help of which the
developer describes the algorithm. This term is not only used for GPUs, it is also used
for FPGAs, TPUs, DSPs. For CUDA, the programming paradigm is very closely
integrated with vector computing, based on the assumption that a kernel call is
executed concurrently in a number of independent elements, allowing parallelism at
the data level. However, there are also atomic operations that can be used to
synchronize between elements. Each call receives indices for 1 or more dimensions,
which are used for data addressing or buffering [7].

The architecture of the GPU belongs to the SIMD class, that is, data is sent to
each core mentioned above, on which one operation is performed in one cycle. As an
example, it is suggested to examine the TU102, which is the basis of the mainstream
GPU RTX 2080Ti and in the professional GPU Quadro RTX 6000. It consists of 6
clusters of graphics processing, 36 clusters of texture processing and 72 Streaming
Multiprocessors (SM). SM consists of 64 CUDA cores, 8 tensor cores, 256 kilobytes
of register file, 4 Texture Units, 96 kilobytes of shared memory. Before that, each
core has access to 6144 kilobytes of L2 cache.

Results. To study the efficiency of calculations, it is necessary to use metrics of
the execution time of the algorithm sequentially (on one processor) and in parallel (on
several processors). Based on the obtained time values, the effectiveness of the
parallel algorithm can be investigated.

The first considered MPP system — a hypercube of degree 1. MPP (decoded as
massive parallel processing) is a massively parallel architecture of computer systems.
In this type of architecture, memory is physically separated. The system contains
separate blocks (modules), inside which there are a processor, communication
processors (routers), a local memory bank, network adapters, hard drives,
input/output devices.

Only processors from the same module have access to the RAM of a separate
node. Blocks are connected to each other by communication channels. It is possible
for users to obtain the number of the processor and the processors to which it is
connected, after which data exchange between them can be initiated.



The main advantages of systems with MPP architecture: good scalability, no
need for clock synchronization of processors due to the fact that in each block only
"own" processors have access to the local RAM bank, high performance and
effectiveness, practically proven on MPP -machines with a large number of
processors (several thousand) [8].

The hypercube is one of the most widespread topologies, in particular for MPP
systems, and has well-described characteristics and information on its application for
various tasks. This topology is a special case of the grid structure, when there are
only two processors for each dimension of the grid (that is, the hypercube contains
2N processors with dimension N) [9].

The hypercube topology is quite widespread in practice when combining
parallel processors. A line connecting two nodes defines a one-dimensional
hypercube. A square formed by four nodes is a two-dimensional hypercube, and a
cube with eight nodes is a three-dimensional hypercube, etc. Since the system
consists of several processor elements with local memory, the time spent on data
transfer must be taken into account when performing the task. The following diagram
shows the data transfer algorithm between nodes during DFT execution for 4 signals.

Based on the algorithm (Fig. 1), we will set the time functions of sequential
processing and parallel processing

Figure 1. Interaction diagram of processors for the MPP system with
parameters N and n=4

Let's apply the acceleration and efficiency formulas to obtain the analytical
isoefficiency formula.

Tn=n+knn 9)

T =n+k— (10)



E =—t=—* (11)

where N is the number of processors, n is the dimension of the problem, kn is
the dimension factor. The dimensionality factor can be calculated using the following
formula:

k =2k, (12)

k =1 (13)

For the example shown in Figure 1, where N=4 and n=4, the value of parallel
processing time will be:

To=nt kel (14)

Several different systems were used to obtain heterogeneous system results,
listed in (table 1). The systems presented use different GPUs and CPUs, which adds
complexity to the analytical approach to establishing isoefficiency.

Table 1.
No IIponecop I'pacdiuauii mpouecop
1 AMD Ryzen 9 3900X RTX 2060
2 AMD Ryzen 5 2400G GTX 1060-3GB
3 Intel Core 15-7200U Geforce 940MX
4 Intel Core 15-9600KF GTX 1080

First, it is necessary to set the execution time of tasks with the same dimension
on the processor and graphics accelerator (Fig. 2). Based on the received data, a
model will be developed that will allow you to distribute the load between processors
in order to complete the task as quickly as possible.

300 35
o
250 v
25
200 i
20
15

10

150

100

0 50000 100000 50000 200000 50000 0 50000 100000 150000 200000 250000



Figure 2. Task execution time on CPU (left) and GPU (right) [1]

The first thing that can be established from the graphs is the nonlinear
complexity of the problem-solving algorithm. This necessitates the use of machine
learning algorithms for the approximation of a nonlinear function. You can also see
the difference between how the time increment changes with the change in the
dimension of the problem. Before applying machine learning to distribute tasks
between the processor and the graphics card, it is necessary to establish the data
transfer time between the general memory of the system and the memory on the
GPU.

Using an approach based on polynomial regression, let's establish the
distribution of the problem's dimension on the CPU and GPU. Based on the time
metrics of task execution on systems involving both processors, it is possible to
empirically establish the efficiency of the system. Consider the time it takes to send
data from the GPU memory to the shared memory (Fig. 3).

4

(1] 50000 100000 50000 200000 250000

Figure 3. Time spent on sending data from GPU to shared memory [1]

Based on the diagram of the obtained time data (Fig. 4), it is possible to
establish the efficiency of heterogeneous systems and establish the necessary
dimension of the problem to obtain the same efficiency on another system.

20
18
16
14
12
10
b
1
2
0

Figure 4. Task execution time on a heterogeneous system [1]

The efficiency of the system can be established based on the time of execution
of the task simultaneously on the processor and on the video accelerator (Table 2).



The proposed approach below uses the distribution of the problem dimension across
processors to establish the overall performance of a heterogeneous system in terms of
speedup relative to the fastest processor of the two presented.

Conclusions. In the course of the research, the main result can be considered
that heterogeneous CPU-GPU systems can be used for iso-efficient computing. The
main advantage of this approach is predictability when building systems oriented to a
specific task, within the framework of this work, such a task is the discrete Fourier
transform. Based on the proposed approach, it is possible to scale the system due to
accelerators based on a different architecture and develop isoefficient algorithms.

The simulation results show the nature of performing the calculation of the
problem of nonlinear complexity. The use of machine learning methods, namely
polynomial regression, allows you to create an algorithm for dividing the task
between CPU and GPU while preserving the acceleration factor. From the results, it
can also be concluded that the system with the most powerful processor shows the
best results for n = 100000, while the results for n = 50000, 200000 are more
balanced.

Table 2.
Ne Cuctema MpadbivHnin n = 50000 n = 100000 n = 200000
npouecop

1 AMD Ryzen 9 3900X RTX 2060 1.004133 1.419191 1.446006

2 AMD Ryzen 5 2400G GTX 1060-3GB 1.011028 1.360679 1.402923

3 Intel Core i5-7200U Geforce 940MX 0.931325 1.228246 1.63615

4 Intel Core i5-9600KF GTX 1080 1.014851 1.245034 1.465462

References

1. V. Rusinov, O. Cherevatenko, L. Pustovit, O. Pustovit, Method of
Development of Isoefficient Heterogeneous System Using Machine
Learning for the Problem of Discrete Transformation of Fourier, Herald of
Khmelnytskyi National University, 297.3 (2021), 19-24

2. Hwang K. Scalability and programmability of massively parallel processor.
Parallel Processing: CONPAR 94-VAPP VI. Springer, Berlin, Heidelberg,
1994. P. 1-4.

3. Grama A. Y., Gupta A., Kumar V. Isoefficiency: Measuring the scalability
of parallel algorithms and architectures. IEEE Parallel & Distributed
Technology: Systems & Applications. 1993. Vol. 1. Issue 3. P. 12-21.

4. Drozdowski M., Singh G., Marszalkowski J. M. Isoefficiency Maps for
Divisible Computations in Hierarchical Memory Systems. PPAM (1). 2019.
P. 224-234.



. Ostertagovda E. Modelling wusing polynomial regression. Procedia
Engineering. 2012. Vol. 48. P. 500-506.

. Bracewell R. N., Bracewell R. N. The Fourier transform and its
applications. New York: McGraw-Hill, 1986. Vol. 31999. P. 267-272.

. Harish P., Narayanan P. J. Accelerating large graph algorithms on the GPU
using CUDA. International conference on high-performance computing.
Springer, Berlin, Heidelberg, 2007. P. 197-208.

. Hey T., Scott C., Surridge M. Simulation and modelling applications on
mpp systems. Massively Parallel Processing Applications and Development.
Elsevier, 1994. P. 15-21.

. Yongchang J. et al. A scalability metric for algorithm-machine on NOW and
MPP. Proceedings Fourth International Conference/Exhibition on High
Performance Computing in the Asia-Pacific Region. IEEE, 2000. Vol. 1. P.
405-407.



Authors

Volodymyr Rusinov — PhD student, Department of Computer Engineering,
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.

Oleksii Cherevatenko — PhD student, Department of Computer Engineering,
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.

Leonid Pustovit — PhD student, Department of Computer Engineering,
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.

Oleksandr Pustovit — PhD student, Department of Computer Engineering,
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.

Artem Volokyta — associate professor, PHd, Department of Computer
Engineering, National Technical University of Ukraine “Igor Sikorsky Kyiv
Polytechnic Institute”.



