
Mykyta Melenchukov, Artem Volokyta, Olga Rusanova

METHOD FOR CALCULATING GAUSSIAN FUNCTIONS TO SOLVE
THE PROBLEM OF IMAGE BLUR ON A HETEROGENEOUS SYSTEM

The article examines the Gaussian image blurring method using
heterogeneous system.

Keywords: Gaussian function, heterogeneous system, CPU, GPU.

Relevance of the research topic. Heterogeneus computations is
underdeveloped currently and there are many areas where they can be efficiently
used [1]. At the same time, there are many problems that are solved by algorithms,
certain parts of which are better performed on a CPU or GPU[2, 3]. In addition, on
not very powerful systems, simple parallelization of calculations on the CPU and
GPU can significantly reduce the calculation time[4]. Performing calculations on
heterogeneous systems allows you to solve these problems

Target setting. Simultaneous execution of calculations on GPU and CPU
helps to overcome the disadvantages of calculation on CPU and GPU for different
algorithms by optimizing the execution process and taking advantage of the
strengths of both.

Actual scientific researches and issues analysis. There are many scientific
studies that describe approaches to the effective use of heterogeneous systems for
solving problems in various directions. They differ in approaches to the
distribution of the share of calculations between the CPU and GPU, optimization
methods of calculations of the algorithm parts that are not adapted to calculations
on the CPU or GPU.

Uninvestigated parts of general matters defining. Heterogeneous
computing is a modern topic that is rapidly developing now and has many
directions for research. This article examines the effectiveness of a heterogeneous
system depending on the volume of input data, its distribution between the CPU
and GPU, and the computational complexity of the algorithm.

The research objective. The purpose of this work is to investigate the
optimization of a heterogeneous system for the problem of Gaussian image
blurring, its dependence on the volume of input data, and the complexity of
blurring.

The statement of basic materials. This article considers the solution of the
Gaussian image blurring problem [5] using a heterogeneous system. In this
algorithm, image blurring is achieved by calculating the color of each pixel of the
resulting image from the color values of its surrounding pixels (Figure 1).

Fig. 1. The principle of operation of the Gaussian image blurring algorithm

The algorithm starts by creating matrix operator - a filter that will be applied
to each image pixel. The values of the cells of this matrix are calculated by the
formula (Equation 1).

(1)𝑣𝑎𝑙 𝑖, 𝑗() = 𝑒
− 𝑖2+𝑗2

2σ2

Where σ - blur uniformity coefficient. In the next step, the matrix is
normalized. For example, for a 3x3 matrix and σ = 2.411, there will be such a
result (Table 1):
0.104745 0.114153 0.104745
0.114153 0.124407 0.114153
0.104745 0.114153 0.104745

Tab. 1. Example of matrix operator

The color of each pixel is encoded by RGB values - 3 numbers that represent
red, green and blue color levels. For each pixel of image should be counted new
value of RGB color (to perform blur operation (Equation 2).𝑅

𝑛𝑒𝑤
, 𝐺

𝑛𝑒𝑤
, 𝐵

𝑛𝑒𝑤
)

𝑅
𝑛𝑒𝑤

= ∑ 𝑘
𝑖

* 𝑅
𝑖

+ 0. 124407 * 𝑅
𝑜𝑙𝑑

𝐺
𝑛𝑒𝑤

= ∑ 𝑘
𝑖

* 𝐺
𝑖

+ 0. 124407 * 𝐺
𝑜𝑙𝑑

(2)𝐵
𝑛𝑒𝑤

= ∑ 𝑘
𝑖

* 𝐵
𝑖

+ 0. 124407 * 𝐵
𝑜𝑙𝑑

Where is a coefficient from matrix operator. – previous𝑘
𝑖

𝑅
𝑜𝑙𝑑

, 𝐺
𝑜𝑙𝑑

, 𝐵
𝑜𝑙𝑑

color of pixel, – colors of neighboring pixels.𝑅
𝑖
, 𝐺

𝑖
, 𝐵

𝑖

An image of the size width x height is submitted to the input of the
algorithm. It is processed in the form of a matrix. The total number of pixels in the
image was used to compare the results on the volume of input data.

Three approaches to the solution that were chosen:

● Multi-threaded on CPU using OpenMP
● Multi-threaded on GPU using CUDA
● Combination of multi-threaded solutions on CPU and GPU.

To combine the CPU and GPU, image should be divided into columns - 75%
of the columns are computed by the GPU, 25% by the CPU. The calculation of the
transformation matrix was performed on the CPU in all cases.

Solutions were tested on images with resolutions of 320x320, 412x275,
600x450, 1000x563, 1200x900, 2048x1306, 4250x2833 with operator matrix sizes
3 and 5 (Table 2-3).

Image
resolution

Pixel count CPU
execution
time, ms

GPU
execution
time, ms

CPU + GPU
execution
time, ms

320x320 102400 14 103 17
412x275 113300 8 68 41
600x450 270000 27 69 27
1000x563 563000 41 68 26
1200x900 1080000 68 140 40
2048x1306 2674688 155 91 46
4250x2833 12040250 665 179 184
5120x2880 14745600 825 125 218

Tab. 2. Execution time for 3x3 matrix operator

Image
resolution

Pixel count CPU
execution
time, ms

GPU
execution
time, ms

CPU + GPU
execution
time, ms

320x320 102400 39 89 62
412x275 113300 22 67 25
600x450 270000 35 65 36
1000x563 563000 75 68 64
1200x900 1080000 210 71 57
2048x1306 2674688 390 90 110
4250x2833 12040250 1620 121 399
5120x2880 14745600 1905 146 581

Tab. 3. Execution time for 5x5 matrix operator

As the result, calculations on the CPU were the slowest, the calculations on
the GPU + CPU were faster than the GPU until some critical point in the
calculations (Figure 2-3), which is related to the size of the operator matrix - the
larger it is, the sooner the GPU will overtake the CPU + GPU solution. With an
increase in the operator matrix, the complexity of calculations grows quadratically
and the CPU solution no longer has time to process its share of calculations. If it is
reduced from 25% to 10%, then the separation from the GPU will come later and
will not grow so fast(Figure 4).

Fig. 2. Calculation time for 3x3 matrix operator

Fig. 3. Calculation time for 5x5 matrix operator

Fig. 4. Calculation time for 5х5 matrix operator and 90% of image is calculated by
GPU

Conclusion. This article examines the relationship between the efficiency of
using a heterogeneous system and the size of the input data, the complexity of the
algorithm, the different sizes of the image portions assigned to the calculation of
the GPU and the CPU.

The GPU does not highly dependent on the image size - with an increase of
input data by 4.5 times (with image dimensions from 2048x1306 to 4250x2833),
the computation time increased by 1.3 times.

The CPU is very dependent on the size of the input data - on the same
interval, the computation time increased by 4.15 times.

The CPU+GPU solution occupies an intermediate stage and achieves better
results with the correct combination of the proportions of calculations parts and
their difficultness (calculated through the size of the matrix operator).

References

1. Lusher, David J., Satya P. Jammy, and Neil D. Sandham. "OpenSBLI:
Automated code-generation for heterogeneous computing architectures
applied to compressible fluid dynamics on structured grids." Computer
Physics Communications 267 (2021).

2. Tang, Xiaoyong, and Zhuojun Fu. "CPU–GPU utilization aware
energy-efficient scheduling algorithm on heterogeneous computing
systems." IEEE Access 8 (2020).

3. Benatia, Akrem, et al. "Sparse matrix partitioning for optimizing SpMV
on CPU-GPU heterogeneous platforms." The International Journal of
High Performance Computing Applications 34.1 (2020).

4. Bateni, Soroush, et al. "Co-optimizing performance and memory
footprint via integrated cpu/gpu memory management, an
implementation on autonomous driving platform." 2020 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE,
2020.

5. Bozkurt, Ferhat, Mete Yaganoglu, and Faruk Baturalp Günay. "Effective
Gaussian blurring process on graphics processing unit with CUDA."
International Journal of Machine Learning and Computing 5.1 (2015).

Authorus

Melenchukov Mykyta – student, Department of Computer Engineering,
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic
Institute”.
E-mail: melenchukov.nikita@gmail.com

Artem Volokyta – associate professor, PHd, Department of Computer
Engineering, National Technical University of Ukraine “Igor Sikorsky Kyiv
Polytechnic Institute”.

Rusanova Olga Veniaminivna – associate professor, PHd, Department
of Computer Engineering, National Technical University of Ukraine “Igor
Sikorsky Kyiv Polytechnic Institute”.

