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WITH GPU COMPUTING COMPARED TO CPU

The present paper concerns the issues of speeding up the execution time of

the modified reverse wave routing algorithm in a software-defined network of

large size. The parallel version of the algorithm is executed on the predefined

network sizes with the same edge probability on a multi-core CPU and GPU

separately, partly on a multi-core GPU and partly on a multi-core CPU. The

exploration results of the parallel algorithm help to define the most suitable way

of algorithm computing in networks of different sizes.
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Relevance of the research topic. The modified inverse wave algorithm is an

effective traffic engineering method for software-configured networks, as it

reduces the time complexity of forming multiple paths and reduces

reconfiguration time. However, the execution time of the algorithm increases

significantly in large networks. This research considers the application of graphic

processor technology to improve the performance of modified reverse wave

routing algorithm in a large mobile network.

Target setting. The research target is to speed up the execution time of the

routing algorithm in software-configured networks of large size by using GPU

computing.



Actual scientific researches and issues analysis. Many scientific papers in the

field of mobile networks are devoted to solving the problem of choosing an

optimal algorithm for execution in large networks [1], [2], [3]. As powerful GPUs

become more available and suitable for massively parallel computing, performing

parallel processing of the algorithm on the GPU can solve the problem of speeding

up the routing execution in a scalable network. Today there are many scientific

works devoted to choosing CPU, GPU or CPU+GPU implementation that provides

minimum execution time for different applications [4].

Uninvestigated parts of general matters defining. This article is devoted to

the parallelization of the reverse wave routing algorithm and exploration of its

execution efficiency in three cases including separate execution with GPU, CPU,

and partly on GPU and partly on CPU to improve the algorithm performance

characteristics in large mobile networks.

The research objective. The main task is to use the technology of graphic

processors to make the reverse wave algorithm find paths in the large networks

faster.

The statement of basic materials. First of all, the possibility of performing

‘for’ cycle iterations in parallel can be used to improve execution time of the

algorithm. This is possible because the routers of the current wave can be

computed separately and the results of their calculations can be combined to

form the next set of routers and so on. Besides, the factors increasing the

execution time of the parallel algorithm version will include the number of

iterations and the maximum number of operations of minimum delay metrics

change of adjacent nodes on each iteration.



Fig. 1. Pseudo code of the parallel algorithm

Then, the parallel wave algorithm execution on a multi-core CPU and a

multi-core GPU depends on its implementation with the use of special libraries

and data structures that fit specific architecture needs.

Experiments. Firstly, the proposed parallel algorithm was executed on a

multi-core CPU only. The CPU characteristics included 4 processors Intel(R)

Core(TM) i5-7200U CPU @ 2.50GHz 2.70 GHz.

To implement the algorithm on the CPU, parallel processing tools in the

Python programming language were used, namely, the multiprocessing module,

which supports the process generation using the API. Due to the possibility of

bypassing the Global Interpreter Lock (GIL), this module allows full use of several

processors on the user's computer. With the use of a multiprocessing library in

Python, processes are generated by creating a Process object and then calling the

start() method. This package also includes special data types for exchange

between processes. Table 1 shows the results of running the algorithm with CPU

depending on the number of nodes from 100 to 1000 in a random connected

graph with a step of 100 with an edge probability of 0.01:

Table 1

Table of algorithm execution results with CPU



t, sec 1,49 2,07 15,89 20,06 21,9 36,15 60 74,87 101,86 112,43

N 100 200 300 400 500 600 700 800 900 1000

Fig. 2. Dependence of execution time on the CPU with nodes number

As can be seen from the results of execution at a given computing power

obtained a small execution time with the number of nodes of the graph from 100

to 200, but then with an increasing nodes number the execution time of the

algorithm does not give optimal results. It can be explained by the impossibility to

process all the nodes in parallel because of an insufficient number of processors,

and because the number of levels of the graph also increases, which also

increases the execution time of the algorithm.

Secondly, the parallel algorithm was executed on a multi-core GPU. It was

decided to use the CUDA simulator from the cudatoolkit package in Python that

implements the functions of one GPU device with a capacity of 5.2 which is

sufficient for writing kernel functions with GPU support. This cudatoolkit package

also includes GPU-accelerated libraries and the CUDA runtime for the Conda

ecosystem and the Numba library tools that support CUDA GPU programming by

directly compiling a limited subset of Python code into CUDA kernels and device



functions according to the CUDA execution model. Kernels written in Numba seem

to have direct access to NumPy arrays. NumPy arrays are transferred between

CPU and GPU automatically. The algorithm was executed on the same range of

graph nodes number from 100 to 1000 and using the same coefficient of edge

probability in a graph that equaled 0.01.

Table 3 shows the results of running the algorithm with GPU depending on

the number of nodes from 100 to 1000 in a random connected graph with a step

of 100 with an edge probability of 0.01:

Table 2

Table of algorithm execution results with GPU

t, sec 0,07 0,16 0,73 0,87 0,94 1,78 2,21 3,31 3,85 4,13

N 100 200 300 400 500 600 700 800 900 1000

Fig. 3. Dependence of execution time on the GPU with nodes number

As can be seen from the results of execution at these graph sizes, there is a

gradual increase in the execution time of the algorithm, which generally gives

good execution results even at a graph size of 1000 nodes. Execution time



intervals with the number of nodes from 100 to 200, from 300 to 500, from 600 to

700, and from 800 to 1000 give approximately similar execution times.

Then, the algorithm was executed partly on a multi-core GPU and partly on a

multi-core CPU in ratio proportion of fifty-fifty using the same characteristics of

CPU and GPU. To implement partial parallelization of the algorithm on CPU and

GPU in a 50/50 percentage ratio, a pre-implemented functionality was used to

parallelize the algorithm on CPU and GPU, so that half of the graph is processed

on the CPU and the other half with all its associated data transferred for

processing on the GPU. Table 3 shows the results of running the algorithm partly

on CPU and GPU depending on the number of nodes from 100 to 1000 in a

random connected graph with a step of 100 with an edge probability of 0.01:

Table 3

Table of algorithm execution results partly on CPU and GPU

t, sec 1,71 3,9 5,03 11,51 16,26 18,32 22,41 26,9 41,53 63,85
N 100 200 300 400 500 600 700 800 900 1000

Fig. 4. Dependence of execution time on the CPU and GPU with nodes

number



This combination gives good results of parallelization at the number of nodes

from 100 to 300. After that, there is a significant increase in execution time at

each subsequent interval, which may be due to an insufficient number of cores on

the CPU and time spent on data transfer from CPU to GPU and vice versa.

To sum it up, the results from all three experiments are given in the form of a

bar chart on Fig 5.

Fig. 5. Comparison of execution time results from all experiments

Conclusions. It has been proven that with an increasing number of graph

nodes the algorithm execution time increases, and the best execution time is

provided on the GPU, due to the architecture, because GPUs have enough cores

to process large amounts of data in parallel, which in this case is determined by

the number of vertices. Due to the insufficient number of cores, the execution

time on the CPU is much longer, as all vertices in the queue are not processed in

parallel by each core, but are distributed to available cores and wait for their

execution sequentially. When running the algorithm partly on the CPU and partly

on the GPU, we have better results than those obtained when running only on the

CPU, although for graphs with less than 200 nodes it is more profitable to apply



the algorithm only on the CPU than partly on the CPU and GPU associated with

additional time delays for data transfer from CPU to GPU.
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