
УДК: 004.896

Andrii Shapran, Oleksandr Dolholenko

DIVISION USING THE BASE RADIX16 NUMBER SYSTEM TO

FORM FRACTION DIGITS

The operation of dividing numbers in floating-point form is the most

complex operation performed in a microprocessor core. To speed it up, the Intel

company, starting with the Sandy Bridge architecture, uses a division algorithm

using to represent the fraction of the number system with a base of r=16 (Radix

16).

The article analyzes the requirements of the IEEE Std 754™-2008

standard for floating-point arithmetic. A basic structural scheme for the

implementation of floating-point division operations has been developed, that

has similar features in many specific implementations of microprocessor cores.

To reduce the calculation time of the floating-point division operation, the

implementation of the mantissa divider block using the Radix base 16

calculation system to form the quotient digits has been considered. Separate

blocks of the divider are designed to the level of the functional scheme.

Key words: mantissa, order, division algorithm, normalization, number

system with base Radix 16.

Introduction. The floating-point representation of numbers is similar to

the commonly used form of number representation in scientific computing and

consists of two parts: the significant part of the number (or mantissa) f and the

exponent (exponent, or order) e. A floating-point number x is represented as

±,ex, fx and has a value: x = ±fx rex, where r – base of the number system (base of

the exponent, or base of the degree).

Some reductions and abbreviations (acronyms) adopted in the standard

IEEE 754 [1]:

LSB – least significant bit;

MSB – the most significant bit;

NaN – not a number.

The absolute value of the mantissa of a normalized number is in the range

[1, 2]. During normalization, it shifts so that in | f | MSB = 1. An operation is

performed on each left shift e = e – 1, with each right shift e = e + 1. Thus, the

two-digit dot in the representation of f is always located after the bit MSB.

The MSB bit of the mantissa of a normalized number, which is always

equal to 1, is removed from the representation of the number and only a small

part of the mantissa is stored in memory. In an arithmetic device, this hidden bit

is restored and thereby contributes to increasing the accuracy of the

representation of operands without taking up memory space.

A floating-point number has two signs: the sign of the number (sign) is

displayed by a separate bit; the sign of the order is displayed by the order bias

(bias).

The standard requires using several data types (formats) for floating-point

calculations [1].

A denormalized number is a floating-point number, exponent of wich is

zero (0 is emin) and non-zero mantissa: e + bias = emin, f ≠ 0, sign = 0 V 1.

When performing an arithmetic operation with a denormalized operand, the

hidden bit is not restored in it. The use of denormalized operands makes the

effect of loss of significance less drastic. Without using of such operands, some

small values that cannot be represented as normalized numbers would have to

be rounded to 0. Such solution would degrade the accuracy of floating-point

calculations in some cases. For example, a number (0.1)2 x 2-126 does not have a

normalized representation in the IEEE single format. If we use 0 instead of this

number in further calculations, then the "gradual loss of accuracy of the result"

will occure. At this time, the implementation of the ability to process

denormalized numbers in a computing device can cause unwanted hardware and

time costs. In this regard, the standard does not require mandatory

implementation of denormalized number processing.

The purpose of the article. The purpose of this article is to develop a

device for performing the operation of dividing floating-point numbers using

the Radix base 16 numbering system for the intermediate representation of the

quotient digits.

Presenting main material. As a result of the research, a structural

scheme for the implementation of division operations has been developed,

which has similar features for many specific implementations of microprocessor

cores. Based on this, the developed scheme can be considered as basic,

сommonly used, in its general features, when developing specific options for

implementation of floating-point division operations. This divider scheme is

shown in the fig. 1.

Figure 1. Floating point divider

The divider usually consists of: an operand unpacking block, a mantissa

divider, a number of additional circuits used for processing: orders, exceptions

(±0, ±∞, NaN), normalization and rounding of the result, as well as its

packaging.

Performing a division operation on floating-point operands c = a/b is

reduced to the following operations:

(±fa x 2(ea+bias))/(±fb x 2(eb+bias)) = ±fa / fb x 2(ea - eb+bias)= fc x 2(ec+bias).

When constructing a floating-point divisor, care must be taken to ensure

correctness and avoid unjustified loss of accuracy. In addition, the possibility of

handling any exceptions should be implemented.

Unpacking includes the selection of: the sign of the mantissa, as well as

the recovery of the hidden MSB bit for each of the operands. During unpacking,

the format of the operands is also converted to the internal format of the

arithmetic device (for example, to the format of quadruple precision). The

unpacked operands are tested for the presence of exceptions among them: 0,

NaN, ±∞. If there is an exception, the result of the operation is formed in

accordance with the relations given in [1] and sent to the package, bypassing the

division of the mantissa.

The preliminary order of the quotient is calculated by subtracting the two

shifted orders of the operands and adding shift sum to the resulting:

(ea+bias) - (eb+bias)+bias= (ea - eb)+bias= ec+bias.

Division of mantissas with signs represented by an additional code is

carried out with the help of a matrix divider, or with the help of a sequential

divider with a high base, for example, Radix-16 [2]. After dividing two

normalized mantissas, each of which is in the range [1, 2], the mantissa of the

quotient can be in the range (1/2, 2). In this regard, for its normalization it may

be necessary to shift by one digit to the left with a decrease of 1 in the

preliminary value of the order of the quotient. After the first normalization, the

k+3 digit mantissa of the quotient is truncated to k+2 digits.

When rounding the mantissa of the quotient fc loss of its normalization

may occur again. At the same time | fc | may be equal to 2, and for its

normalization, a shift of one digit to the right with an increase of 1 value may

again be required ec+bias.

To increase the speed, it is possible to pre-calculate the value of ec+bias

increased by 1 at each normalization step and choose the correct value after it

becomes clear whether a shift is required after rounding. Since mantissa

division is the most complicated part of floating-point division, there is enough

time for such calculations. In addition, rounding should not be a separate step at

the end of the operation. It can be combined with mantissa division equipment.

The speed of the divisor based on the algorithm of recurrent calculation of

numbers depends mainly on the delay of the function that generates the digit of

the quotient.

The basis of the development of the mantissa division block is the SRT

algorithm of mantissa division in the number system with the base r = 16, which

is described in [4]. The article presents an analytical approach that extends the

well-known theory [5-8] for performing standard SRT division and allows to

implement the function of predicting the number of the part more easily.

In fig. 2 the block diagram of the mantis division unit performing the

operation q = x/d is shown and can process all floating-point number formats

provided by the standard [1]. There are five such formats: half precision (SF) -

16 bits, single precision (F) - 32 bits, double precision (DF) - 64 bits, double

extended precision (DEF) - 80 bits and quadruple precision (QF) (128

discharges). To achieve this goal, the mantissa division block must be able to

handle, according to the format: 12, 25, 54, 66 and 114 bit binary mantissas d

and x (together with the sign and hidden bits) in positive code.

Figure 2. Structural diagram of the mantissa division block in the

counting system with r=16 and memorization of transfers during additions.

At each cycle of this scheme, the prediction of the next digit of the share

is carried out qj+1. The mantissa of the fraction q is calculated in the redundant

number system with the base r = 16 and is immediately converted into a binary

positive code, as described in [8]. Before conversion, each of the provided digits

of the share qj+1 is a signed number │ qj+1│≤ a, for which the redundancy factor

is fulfilled p = a/(r-1) = 12/15, or in other words: each digit of the fraction in

the device is assumed from the range

qj+1€{-12,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,12) and consists of

two components, according to [4]. Each digit of the fraction from the redundant

sixteen-year numbering system, in the process of calculation, is converted into

four digits of the binary system. As a result, the necessary number of calculation

cycles for predicting the digits of the fraction is reduced by four times,

compared to the calculation of the digits of the fraction directly in the binary

number system. The usage of a redundant digital set for fractional prediction

significantly increases the speed of each individual calculation cycle by using

carry-preserving adders.

The duration of one calculation cycle in the operation of the mantissa

division block can be calculated by the signal propagation delay in the critical

(longest) chain of the circuit from Fig. 2, where it is shown by a dashed line.

In order to reduce the number of CSAs (carry-saved single-bit adder

lines), forming d multiples of qjs €{-11, 11}, are not used in the device under

development, as it would require three CSAs. Instead of it, the correction

function is used. As a result, the required number of calculation cycles for

predicting the quotient digits can be reduced by less than four times. In order to

increase the speed of the scheme, the prediction of the fraction number at the jth

step of the calculation is carried out simultaneously with the detection of an

error at the (j -1)th step.

Each digit qj+1s of parts is calculated as the result of of two component

parts sum calculated on two different combination schemes:

qj+1s = qh + ql, where: qh €{±8, ±4, 0}, ql€{±4,±2,±1,0}.

In fig. 3 the logic of the assumption from fig. 4 in detail is shown. In this

figure: CPA - Carry Propagate Adder (adder with propagated transfers); CS -

combination formation schemes qh and ql, in accordance.

Older grades of the partial remainder w’[j], calculated in the form with

stored hyphens, are pre-processed using CPA. The outputs of the CPA are

connected to the inputs of two different combinational circuits as shown in Fig.

3. The second inputs of the combinational circuits are connected to the two

higher digits of the divider d. The first combinational circuit calculates qh and

requires only the five most significant bits of the value. The second calculates ql
and needs the entire evaluation of the partial balance.

Figure 3. Details of the implementation of the assumption logic.

The scheme for converting the mantissa of the fraction q from the

redundant number system into a binary positive code, according to [8], is built

as an accumulating adder/subtractor.

Conclusions. In this work, a reconfigurable floating-point divider has

been developed, that can dynamically reconfigure to divide operands of all five

operand formats required by the standard for floating-point arithmetic IEEE Std

754™-2008.

The calculation of the mantissa of the quotient is carried out using the

redundant number system with a base to predict the digits of the quotient r =16

and numbers {-12,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,12}. In the

process of calculating the numbers, the fraction is converted into a normal

binary positive code.

Using such a redundant numbering system for temporarily representation

of the quotient's mantissa digits reduces the required number of iterative

calculation steps by 4 times. In fact, it is achieved by four binary digits of the

mantissa calculation at each iteration, which can be adjusted at the next

iteration.

The performed development will be useful for designing fixed and

floating point division operation device, for a microprocessor core with a

superscalar architecture compatible with the х86-64 family.

References:

1. IEEE 754: Standard for Binary Floating-Point Arithmetic [Электронный

ресурс] / 3 апрель 2014. – URL: http://grouper.ieee.org/groups/754/.

2. Behrooz Parhami. Computer Arithmetic. Algorithms and Hardware

Designs, New York, Oxford University Press, 2000 – 491 p.

3. Pippenger, N., "The Complexity of Computations by Networks," IBM J.

Research and Development, Vol. 31, No. 2, pp. 235-243, March 1987.

4. С VLSI, 1999. Proceedings. Ninth Great Lakes Symposium on Year:

1999, Pages: 74 - 77, DOI: 10.1109/GLSV.1999.757380

5. L. Benini, E. Macii, and M. Poncino. Telescopic Units: Increasing the

Average Throughput of Pipelined Designs by Adaptative Latency Control. In

34th Design Automation Conference, 1997.

6. J. Cortadella and T. Lang. Division with Speculation of Quotient Digits.

In 11th Symposium on Computer Arithmetic, pages 87–94, 1993.

http://grouper.ieee.org/groups/754/
http://dx.doi.org/10.1109/GLSV.1999.757380

7. J. Cortadella and T. Lang. High-Radix Division and Square Root with

Speculation. IEEE Transaction on Computers,C-43(8):919–931, August 1994.

8. M.D. Ercegovac and T. Lang. Division and Square Root.

Digit-Recurrence Algorithms and Implementations. Kluwer Academic

Publishers, Norwell, MA, 1994.

AUTHORS

Oleksandr Dolholenko - associate professor, candidate of technical sciences,

Senior Research Fellow, Department of Computer Engineering, National

Technical University of Ukraine "Ihor Sikorskyi Kyiv Polytechnic Institute".

E-mail:

Andrii Shapran – student, Department of Computing, National Technical

University of Ukraine "Ihor Sikorskyi Kyiv Polytechnic Institute".

E-mail: andriyito.ti99@gmail.com

