
UDC 004.272.2

Oleksiі Krutko, Oleksandr Korochkin
ANALYSIS OF THREADS CONTROL TOOLS IN MODERN LANGUAGES

AND LIBRARIES OF PARALLEL PROGRAMMING

The paper deals with the analysis tools for thread control used in modern language
and libraries of parallel programming. Languages Java, Ada, C#, Python, libraries
WinAPI, OpenMP, MPI are considered. Means optimal for solving the problems of
mutual exclusion and synchronization for scalable parallel programs are defined.
Key words: threads, organization of treads communication.
Tabl.: 1. Bibl.: 6.

Target setting. The problem of developing software for parallel computer systems
is becoming more urgent in connection with the growing market of multi-core
processors. This work is devoted to the analysis of various means of programming
and threads control in modern parallel programming libraries and languages.
Actual scientific researches and issues analysis. The organization of the

interaction of threads is an important part of a parallel program, the execution of
which is critical depending on both the choice and the application of means of
interaction. The increase in the number of processors in modern computer systems
and, accordingly, the number of interacting threads poses the task of choosing and
using reliable thread synchronization tools. This is especially true for scalable
systems.
Uninvestigated parts of general matters defining. This article is devoted to the

selection and application of thread interaction tools for scalable computer systems
where the number of processors and, accordingly, the number of threads, can change
dynamically. The development of applications for scalable systems has its own
characteristics and requires the use of optimal tools that will ensure the correct
execution of the program and the absence of deadlocks. Therefore, this work focuses
on the analysis thread control tools for scalable systems.
The research objective. The task is to analyze the existing means of interaction of

threads, which will provide the possibility of choosing the means optimal for scalable
systems when solving the task of reliable interaction of a large number of threads, the
number of which may change.

The purpose of this work is to increase the efficiency of development and
execution of parallel programs for scalable computer systems.
The statement of basic materials. Software development for parallel computer

systems is based on the use of modern parallel programming languages and libraries.

The emergence of new and improvement of existing means of interaction of threads
requires their constant tracking and analysis for the purpose of optimal use when
building parallel programs, including for scalable computer systems.

Well-known parallel programming languages and libraries were selected for the
analysis of the means of creating and organizing the interaction of threads of different
levels: Java, Ada, C#, Python, WinAPI, OpenMP, MPI [1-6].

Creation (declaration) of a thread is related to the description of the thread (group
of threads), the formation of the ID of the thread, setting the priority, choosing the
processor for execution, the size of the stack, actions of the thread, starting and
terminating.

This can be done in different ways:
- through the use of special modules (classes) (Java: class Thread, Ada: module task);
- through thread functions that define the actions and parameters of threads (C#,
WinAPI) - with the help of so-called thread functions. (C#, WinAPI) Here, the
thread's actions are specified through a pre-designed function that defines the thread's
behavior;
- through the definition in the sequential program of the sections that will be run in
parallel (OpenMP)
- through creating copies of the entire program and parallel execution of these copies
(MPI, PVM).

Additional possibilities are provided by combining threads into groups (pools) and
using queues of various types, which allow optimizing the execution of threads (Java,
Python, Ada, C#, MPI). This is a development of the queuing mechanisms
(previously proposed in the Ada language) and communicators (MPI).

Each approach has its advantages, the use of which allows you to simplify the
development of a parallel program, its debugging, modification, and scaling.

Important for scalable parallel systems are solution:
- problem of dynamically creating thread
- problem of access to shared resources (mutual exclusion problem)
- thread synchronization problem.
Solutions to the first problem are provided by modern languages (libraries) of

parallel programming, where the possibility of dynamic creation of threads,
characteristic of scalable systems, is realized. Dynamic generation of threads requires
correspondingly dynamic identification of threads. In the OpenMP and MPI libraries,
identification is carried out automatically; each new thread receives an integer
identifier in a corresponding parallel block or communicator. Another situation occurs
if the thread name is formed directly by the developer. In Ada, dynamic thread
creation provides a task type that allows you to create arrays of threads

task type RS is . . . end RS;
T is an array of RS (1.. N);

and together with the use of a discriminate, form an internal identifier:
task type RS(Id: integer) is . . . end RS;
T1: RS(1); . . . T10: RS(10);

The second problem. As a rule, when the number of threads changes, the number
of shared resources does not change, so the problem of mutual resolution can be
solved by low-level means (semaphores, mutexes) and lock type means. But if it is
necessary to take into account quantitative characteristics for complex accesses to
shared resources, then more powerful tools are needed - monitors, for example,
protected inputs in the protected unit of the Ada language, which provides additional
logic for accessing shared data.

Recently, non-blocking means of thread interaction (atomic variables,
non-blocking queues) have been developed, which allow minimizing the time of
using shared resources.

In scalable systems, the solution to the problem of thread synchronization is the
most complicated. If the use of binary semaphores and events is enough to
synchronize two threads, then multiple synchronization requires more powerful
means.

To implement multiple synchronization, you can use the barrier mechanism, which
was developed in the form of a counting barrier and is used in almost all languages
 and libraries.

The most powerful tool remains the monitor mechanism. In Ada language, special
constructions of the protected module are proposed for solving the synchronization
task - protected entries, which have barriers that additionally define various
conditions for blocking and unlocking flows. The use of these entries allows to
program complex forms of thread interaction, which is important for scalable
programs:

entry Wait_Task when Cond
Here, in Wait_Task entry barrier (when Cond construct), a logical variable is

formed that defines the condition of blocking and unblocking the thread.
Table 1 provides data on the presence in the considered languages and libraries of

parallel programming means of organizing the interaction of threads.

Table 1
Tools Java C# Ada Python WinAPI OpenMP MPI

Semaphores + + + + +
Mutexes + + +
Events + + +
Critical Section + + + + +
Barriers + + + + + + +
Atomic/Volatile + + + + + +
Monitors +
Queue + + + +

Pool + + + + +
Messages + +

Conclusions. Means of modern languages and parallel programming libraries for
creating and control threads are analyzed. The given results will make it possible to
choose the optimal tools when creating software for scalable parallel computer
systems.

References

1. Oaks S. Java Performance: In-depth Advice for Tuning and Programming Java 8,
11, and Beyond. O’Reilly Media, Inc.; 2end Edition, (Februare 4, 2020), p.452.

2. Barnes J. Programming in Ada 2012. Cambridge University Press; 2nd edition
(May 19, 2022), p. 992.

3. Nagel Chrisian, Professional C# and .NET. Wrox; 2021st Edition, (September,
2021), pp. 1008.

4. Gorelick M., Ozsvald I. High Performance Python, O’Reilly Media, Inc.; 2end
Edition, (April 30, 2020), p. 470.

5. Klemm M., Cownie J. High Performance Parallel Runtimes Design and
Implementation. Berlin, Boston: De Gruyter OldenDurg 2021, p.328.

6. Muhammad Nufail Farooqi, Miquel Pericàs Vectorized Barrier and Reduction in
LLVM OpenMP Runtime In Proceeding of 17th International Workshop on
OpenMP, IWOMP 2021, Bristol, UK, September 14–16, 2021, pp. 18-32.

https://link.springer.com/chapter/10.1007/978-3-030-85262-7_2#auth-Muhammad_Nufail-Farooqi
https://link.springer.com/chapter/10.1007/978-3-030-85262-7_2#auth-Miquel-Peric_s

AUTHORS
Krutko Oleksii – student of National Technical University of Ukraine “Igor Sikorsky
Kyiv Polytechnic Institute”.
E-mail: aleksey.krutko @gmail.com

Korochkin Oleksandr – associate professor, Department of Computer Engineering,
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic
Institute”.
E-mail: avcora@gmail.com

mailto:pavel.regida@gmail.com

