IMPROVING REINFORCEMENT LEARNING FOR QUADRUPED ROBOT LOCOMOTION
Keywords:
robot locomotion, machine learning, reinforcement learningAbstract
This article addresses the issue of machine learning of a quadruped robot for flexible locomotion, in slower learning environments with limited computational resources. To create a solution, reinforcement learning and a number of techniques are used to improve the result and speed of machine learning.
References
Rudin N., Hoeller D., Reist P., Hutter M. Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning [Electronic resource] // arXiv.org, 2021. Available at: https://arxiv.org/pdf/2109.11978 (accessed: April 25, 2025).
NVIDIA Corporation. Isaac Lab Documentation [Electronic resource] // Isaac Sim Documentation. Available at: https://isaac-sim.github.io/IsaacLab/main/source/setup/installation/index.html (accessed: April 25, 2025).
Aractingi M., Léziart P.-A., Flayols T., Perez J., Silander T., Souères P. Controlling the Solo12 Quadruped Robot with Deep Reinforcement Learning [Electronic resource] // arXiv.org, 2023. Available at: https://arxiv.org/abs/2309.16683 (accessed: April 25, 2025).
Bellegarda G., Ijspeert A. CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion [Electronic resource] // arXiv.org, 2022. Available at: https://arxiv.org/abs/2211.00458 (accessed: April 25, 2025).
Unity Technologies. Unity ML-Agents Toolkit: Example Learning Environments [Electronic resource] // Unity-Technologies.github.io, 2022. Available at: https://unity-technologies.github.io/ml-agents/Learning-Environment-Examples/ (accessed: April 25, 2025).
Babadi A., Naderi K., Hämäläinen P. Self-Imitation Learning of Locomotion Movements through Termination Curriculum [Electronic resource] // arXiv.org, 2019. Available at: https://arxiv.org/pdf/1907.11842 (accessed: April 25, 2025).
Ye L., Li R., Hu X., Li J., Xing B., Peng Y., Liang B. Unity RL Playground: A Versatile Reinforcement Learning Framework for Mobile Robots [Electronic resource] // arXiv.org, 2025. Available at: https://arxiv.org/abs/2503.05146 (accessed: April 25, 2025).