METHODOLODGY FOR STATISTICAL LEARNING OF NONLINEAR MODEL PARAMETERS WITH THE INTEGRAL FORM OF OLS IN THE SCHEME OF DIFFERENTIAL-NONTAYLOR TRANSFORMATIONS

Authors

  • Oleksii Pysarchuk National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute", Ukraine
  • Oleksandr Tuhanskykh National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute", Ukraine
  • Danylo Baran National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute", Ukraine

Keywords:

data science, statistical learning, time series, nonlinear, models

Abstract

The article presents the methodology for statistical learning of nonlinear model parameters, its principle and efficiency of application. The results of modeling are shown with the statistical characteristics of the obtained expectation compared with the results of the application of the statistical learning methodology using the differential spectra balance.

References

An introduction to statistical learning: With applications in python. / [G. James, D. Witten, T. Hastie, R. Tibshirani, J. Taylor]. – Springer Nature, 2023. – 613 p.

Nguyen M. A. Guide on Data Analysis. – Bookdown, 2020. https://bookdown.org/mike/data_analysis/

Chapra S. C. Numerical Methods for Engineers, Seventh Edition. / S. C. Chapra, R. P. Canale. – New York: McGraw-Hill Education, 2015. – 987 p.

Hastie T. The elements of statistical learning: data mining, inference, and prediction. / T. Hastie, R.Tibshirani, J. Friedman // Springer Series in Statistics. – Springer, USA, 2009 – 745p.

Provost F. Data Science for Business / F. Provost, T. Fawcett. – O’Reilly Media, Inc, USA, 2013. – 409p.

Method for Statistical Evaluation of Nonlinear Model Parameters in Statistical Learning Algorithms. / [O. Tuhanskyh, D. Baran, O. Pysarchuk], Yang, XS., Sherratt, S., Dey, N., Joshi, A. (eds) // Proceedings of Ninth International Congress on Information and Communication Technology. ICICT 2024. Lecture Notes in Networks and Systems. – Springer, Singapore. – 2024. – Vol 1013 – P. 265-274. DOI: https://doi.org/10.1007/978-981-97-3559-4_21

Method for Determining the Structure of Nonlinear Models for Time Series Processing. / [O. Pysarchuk, O. Tuhanskykh, D. Baran] // Radio Electronics, Computer Science, Control, Zaporizhia, 2025. – P. 53-62. DOI: https://doi.org/10.15588/1607-3274-2025-1-5.

Kharchenko, V. P., Pysarchuk, O.O. Noinlinear and multicriterial modelling of the processes in control systems. Monograph. / V. P. Kharchenko, O. O. Pysarchuk. – Kyiv, 2015. – 372p.

Puhov G. E. Differential spectra and models. / G. E. Puhov. – Kyiv: Nauk. Dumka, 1990. – 184p.

Puhov G. E. Differential transfrormations and mathematical modelling of the physical processies. / G . E . Puhov. – Kyiv: Nauk. Dumka, 1986. – 159p.

Published

2025-06-30

Issue

Section

Machine learning, Big Data (AI)