INCREASING THE EFFICIENCY OF DATA PROCESSING USING QUANTUM COMPUTATIONS

Authors

  • Volodymyr Rusinov National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute", Ukraine
  • Oleksii Cherevatenko National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute", Ukraine

Keywords:

Quantum computing, hybrid quantum-classical systems, data transformation, quantum acceleration

Abstract

This article explores how emerging quantum computing techniques can be integrated into classical ETL pipelines to improve the efficiency of key data extraction, transformation, and validation operations through hybrid quantum-classical architectures.

References

Loshin, D. (2001). ETL solutions: Tools and techniques for extracting, cleaning, conforming, and delivering data. Morgan Kaufmann.

Inmon, W. (2005). Building the data warehouse (4th ed.). Wiley.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2016). Apache Spark: A unified engine for big data processing. Communications of the ACM, 59(11), 56–65. https://doi.org/10.1145/2934664

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing (pp. 212–219). ACM. https://doi.org/10.1145/237814.237866

Lloyd, S., Mohseni, M., & Rebentrost, P. (2013). Quantum algorithms for supervised and unsupervised machine learning. arXiv. https://arxiv.org/abs/1307.0411

Farhi, E., Goldstone, J., & Gutmann, S. (2014). A quantum approximate optimization algorithm. arXiv. https://arxiv.org/abs/1411.4028

Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, Article 79. https://doi.org/10.22331/q-2018-08-06-79

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing (pp. 212–219). ACM. https://doi.org/10.1145/237814.237866

Lloyd, S., Mohseni, M., & Rebentrost, P. (2013). Quantum algorithms for supervised and unsupervised machine learning. arXiv. https://arxiv.org/abs/1307.0411

Schuld, M., Sinayskiy, I., & Petruccione, F. (2015). An introduction to quantum machine learning. Contemporary Physics, 56(2), 172–185. https://doi.org/10.1080/00107514.2014.964942

Giovannetti, V., Lloyd, S., & Maccone, L. (2008). Quantum random access memory. Physical Review Letters, 100(16), 160501. https://doi.org/10.1103/PhysRevLett.100.160501

Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, Article 79. https://doi.org/10.22331/q-2018-08-06-79

Zhang, X., Xue, Y., & Xu, Y. (2022). Hybrid quantum-classical data pipelines: Opportunities and limitations. Journal of Quantum Information Science, 12(1), 45–60. https://doi.org/10.4236/jqis.2022.121003

Vassiliadis, P., Simitsis, A., & Skiadopoulos, S. (2002). Conceptual modeling for ETL processes. In Proceedings of the 5th ACM international workshop on Data Warehousing and OLAP (pp. 14–21). ACM. https://doi.org/10.1145/583890.583894

Apache Software Foundation. (n.d.). Apache NiFi: Scalable data routing and transformation. https://nifi.apache.org

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing (pp. 212–219). ACM. https://doi.org/10.1145/237814.237866

Schuld, M., & Petruccione, F. (2018). Supervised learning with quantum computers. Springer. https://doi.org/10.1007/978-3-319-96424-9

Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support vector machine for big data classification. Physical Review Letters, 113(13), 130503. https://doi.org/10.1103/PhysRevLett.113.130503

Farhi, E., Goldstone, J., & Gutmann, S. (2014). A quantum approximate optimization algorithm. arXiv. https://arxiv.org/abs/1411.4028

Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., & Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747), 209–212. https://doi.org/10.1038/s41586-019-0980-2

Published

2025-06-30

Issue

Section

Global Networks, Grid and Cloud (GN)