ACCELERATION OF NEURAL NETWORK TASKS ON HETEROGENEOUS CPU-GPU SYSTEMS
Keywords:
heterogeneous systems, neural networks, machine learning, CPU, GPUAbstract
The article analyzes the issue of heterogeneous CPU-GPU system use in accelerating applied tasks, related to the neural network learning process.
References
Chen, Tianqi & Li, Mu & Li, Yutian & Lin, Min & Wang, Naiyan & Wang, Minjie & Xiao, Tianjun & Xu, Bing & Zhang, Chiyuan & Zhang, Zheng. (2015). MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems.
J. E. Stone, D. Gohara and G. Shi, "OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems," in Computing in Science & Engineering, vol. 12, no. 3, pp. 66-73, May-June 2010, doi: 10.1109/MCSE.2010.69.
E. Nurvitadhi, Jaewoong Sim, D. Sheffield, A. Mishra, S. Krishnan and D. Marr, "Accelerating recurrent neural networks in analytics servers: Comparison of FPGA, CPU, GPU, and ASIC," 2016 26th International Conference on Field Programmable Logic and Applications (FPL), Lausanne, 2016, pp. 1-4, doi: 10.1109/FPL.2016.7577314.
Van Werkhoven, Ben & Maassen, Jason & Seinstra, Frank & Bal, Henri. (2014). Performance models for CPU-GPU data transfers. Proceedings - 14th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2014. 10.1109/CCGrid.2014.16.
Y. Kim, P. Mercati, A. More, E. Shriver and T. Rosing, "P4: Phase-based power/performance prediction of heterogeneous systems via neural networks," 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Irvine, CA, 2017, pp. 683-690, doi: 10.1109/ICCAD.2017.8203843.
GPU-Accelerated Applications [Електронний ресурс]. – Режим доступу: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/gpu-applications-catalog.pdf
NVidia Turing GPU Architecture [Електронний ресурс]. – Режим доступу: https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
Yang, Canqun & Wang, Feng & Du, Yunfei & Chen, Juan & Liu, Jie & Yi, Huizhan & Lu, Kai. (2010). Adaptive Optimization for Petascale Heterogeneous CPU/GPU Computing. Proceedings - IEEE International Conference on Cluster Computing, ICCC. 19-28. 10.1109/CLUSTER.2010.12.
J. Hestness, S. W. Keckler and D. A. Wood, "GPU Computing Pipeline Inefficiencies and Optimization Opportunities in Heterogeneous CPU-GPU Processors," 2015 IEEE International Symposium on Workload Characterization, Atlanta, GA, 2015, pp. 87-97.
Soyata, T., 2018. GPU Parallel Program Development Using CUDA. New York: CRC Press.
CUDA Refresher: Reviewing the Origins of GPU Computing [Електронний ресурс]. – Режим доступу: https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf